

Software
Development

Cost Estimating
Guidebook

Software Technology Support Center Cost Analysis Group

July 2009

 Resource manual for education and support in developing credible software development cost estimates

Executive Summary

The purpose of the Software Development Estimating Guidebook is to provide the cost analyst with a
resource manual to use in developing credible software development cost estimates. A realistic estimate is
based upon a solid understanding of the software development process and the historical data that forms a
framework for the expected values. An estimating methodology that follows a proven process consistent
with best practices and Department of Defense (DoD) policies further contributes to estimate validity.

The information is presented at two levels. One level will help the experienced analyst immediately focus
on the material necessary to develop an estimate. The second level of information is for the novice, or
infrequent user, to use as educational information regarding the software development and estimating
processes.

The estimating process starts with a determination of the purpose of the estimate. Next, the cost (or effort)
and schedule for the software development project are determined using three factors: effective size,
development environment, and product complexity.

The key, and most important, element in the software estimate is the effective size of the software product.
Determining size can be approached from several directions depending upon the software size measure
(lines of code, function points, use cases, etc.) used by the development organization. A system developed
by writing lines of code requires a different estimating approach than a previously developed or off-the-
shelf application. The acquisition phase also influences the analyst’s approach because of the amount and
type of software development data available from the program or developers.

The development environment is the next most important effort and schedule driver. The environment can
be factored into five categories: (1) developer capability or efficiency, (2) personnel experience, (3)
development system characteristics, (4) management characteristics, and (5) product characteristics. The
last four categories are largely driven by the product requirements. These factors take into consideration
the development environment itself, the capabilities and experience of the developers, the developing
organization’s management style, security requirements, and so on. These factors, along with software size
and complexity, combine to determine the productivity or efficiency with which a developer can “build”
and test the software. Ultimately, these environment characteristics drive the cost and schedule of the
software development and implementation of the system.

It is uncertain who first coined the phrase, “A fool with a tool is still a fool.” Plugging numbers into a
parametric model without knowing if the results are realistic fits this adage. This guidebook addresses
estimate realism using historical data, industry best practices, and authoritative insight. The insight comes
from experts in the fields of software development and cost estimating. This information helps the analyst
conduct a “sanity check” of their estimate results. A well-understood and validated estimate offers a
defensible position for program office analysts, component cost agency analysts, and independent
evaluators. A reasonable estimate is useful in budgeting, milestone decision reviews, and determining the
life cycle or other costs of the program.

The contents of this guide, ten sections and nine appendices, are grouped into four major parts. An
introduction and the basics of the software development process lead off the tutorial. The next two major
parts cover the estimating process and related details. Finally, concepts and examples presented in the
sections are expanded in a set of appendices. The idea behind this structure is to present principles for
instruction and reference in the core sections and, then, examine details and related examples.

The information herein is not intended to dictate policy or supplant guidance given in official documents.
However, the authors hope that everyone within the software cost estimating community in both the public
and private sectors will find it useful. The extent of information on software development and cost
estimating presented within these pages is not intended to be all-inclusive. Yet, the guidebook is meant to
be comprehensive and complete, providing a single-resource document for use in creating estimates.

ii

Table of Contents
Executive Summary ... i

List of Figures ... xi

List of Tables ... xii

List of Equations ... xv

Acknowledgements ... xvii

Section 1 Introduction .. 1
1.1 Development constraints ... 4

1.2 Major cost factors ... 4

1.2.1 Effective size .. 5

1.2.2 Product complexity .. 5

1.2.3 Development environment ... 6

1.2.4 Product characteristics ... 6

1.3 Software support estimation ... 6

1.4 Guidebook overview ... 7

Section 2 Software Development Process ... 10
2.1 The Defense Acquisition System .. 10

2.1.1 Framework elements .. 10

2.1.2 User needs and technology opportunities .. 11

2.1.3 Pre-systems acquisition .. 11

2.1.3.1 Concept refinement phase ... 11
2.1.3.2 Milestone A ... 12
2.1.3.3 Technology development phase .. 12
2.1.3.4 Milestone B ... 12

2.1.4 Systems acquisition .. 12

2.1.4.1 System development & demonstration ... 12
2.1.4.2 Milestone C ... 12
2.1.4.3 Production & deployment ... 13

iii

2.1.5 Sustainment .. 13

2.2 Waterfall model .. 13
2.2.1 Requirements analysis and specification ... 15

2.2.2 Full-Scale Development ... 16

2.2.3 System Integration and Test ... 17

2.3 Software development products .. 17
2.3.1 Software Development Plan .. 17

2.3.1.1 Project organization .. 17
2.3.1.2 Schedule .. 18
2.3.1.3 Software Design Document .. 18
2.3.1.4 Quality Plan .. 18

2.3.2 Software Requirements Specification .. 19

2.3.3 Interface Control Document... 19

Section 3 Levels of Detail in Software Estimates ... 20
3.1 Estimate foundation factors .. 20
3.2 System-level estimating model ... 21
3.3 Component-level estimating model .. 23
3.4 Estimating process .. 26

Section 4 System-Level Estimating Process .. 27
4.1 Product complexity ... 28
4.2 Size estimating process ... 29

4.2.1 Effective source lines of code (ESLOC) .. 29

4.2.2 Function point counting ... 30

4.3 Software size growth .. 30
4.4 Productivity factor .. 31

4.4.1 Productivity factor table ... 32

4.4.2 ESC metrics ... 32

4.5 System-level cost estimating .. 33
4.6 Reality check ... 34
4.7 Allocate development effort ... 34
4.8 Allocate maintenance effort .. 36

iv

4.8.1 Software enhancement ... 36

4.8.2 Knowledge retention .. 37

4.8.3 Steady state maintenance effort ... 38

Section 5 Component-Level Estimating Process .. 39
5.1 Staffing profiles .. 41
5.2 Product complexity ... 42
5.3 Size estimating process ... 42
5.4 Development environment .. 43

5.4.1 Personnel evaluation .. 43

5.4.2 Development environment evaluation ... 43

5.4.3 Product impact evaluation .. 43

5.4.4 Basic technology constant .. 44

5.4.5 Effective technology constant .. 44

5.5 Development cost and schedule calculations .. 45
5.6 Verify estimate realism ... 46
5.7 Allocate development effort and schedule .. 46

5.7.1 Effort allocation ... 46

5.7.2 Schedule allocation .. 48

5.8 Allocate maintenance effort .. 48

Section 6 Estimating Effective Size ... 49
6.1 Source code elements .. 50

6.1.1 Black box vs. white box elements .. 50

6.1.2 NEW source code .. 51

6.1.3 MODIFIED source code .. 51

6.1.4 DELETED source code .. 51

6.1.5 REUSED source code .. 51

6.1.6 COTS software ... 51

6.1.7 Total SLOC .. 52

6.2 Size uncertainty ... 52
6.3 Source line of code (SLOC) .. 53

6.3.1 Executable .. 53

6.3.2 Data declaration ... 54

v

6.3.3 Compiler directives .. 54

6.3.4 Format statements .. 54

6.4 Effective source lines of code (ESLOC) ... 54
6.4.1 Effective size as work .. 54

6.4.2 Effective size equation ... 56

6.4.2.1 Design factor ... 57
6.4.2.2 Implementation factor ... 57
6.4.2.3 Test factor ... 57

6.5 Size growth ... 58
6.6 Size risk ... 62
6.7 Function points ... 63

6.7.1 Function point counting ... 63

6.7.2 Function point components .. 64

6.7.2.1 Application boundary.. 65
6.7.2.2 Internal Logical File .. 66
6.7.2.3 External Interface File... 19
6.7.2.4 External Input.. 68
6.7.2.5 External Output ... 68
6.7.2.6 External Inquiry .. 69
6.7.2.7 Transforms .. 69
6.7.2.8 Transitions... 70

6.7.3 Unadjusted function point counting ... 71

6.7.4 Adjusted function points .. 71

6.7.4.1 Value Adjustment Factor .. 72
6.7.4.2 Adjusted function point calculation .. 73

6.7.5 Backfiring .. 73

6.7.6 Function points and objects ... 74

6.7.7 Zero Function point problem ... 75

Section 7 Productivity Factor Evaluation ... 77
7.1 Introduction ... 77
7.2 Determining productivity factor ... 78

7.2.1 ESC metrics ... 80

7.2.2 Productivity index .. 82

vi

7.3 System-level estimating .. 83

Section 8 Evaluating Developer Capability .. 85
8.1 Importance of developer capability .. 85
8.2 Basic technology constant .. 86

8.2.1 Basic technology constant parameters ... 87

8.2.1.1 Analyst capability ... 87
8.2.1.2 Programmer capability .. 89
8.2.1.3 Application domain experience .. 89
8.2.1.4 Learning curve .. 91
8.2.1.5 Domain experience rating ... 91
8.2.1.6 Modern practices ... 91
8.2.1.7 Modern tools ... 92

8.2.2 Basic technology constant calculation ... 93

8.3 Mechanics of communication ... 94
8.3.1 Information convection .. 95

8.3.2 Radiation .. 96

8.3.3 Communication barriers ... 96

8.3.3.1 Skunk Works ... 96
8.3.3.2 Cube farm.. 97
8.3.3.3 Project area.. 97

8.3.4 Utensils for creative work .. 97

Section 9 Development Environment Evaluation .. 99
9.1 Learning curve vs. volatility ... 100
9.2 Personnel experience characteristics .. 100

9.2.1 Programming language experience .. 101

9.2.2 Practices and methods experience.. 103

9.2.3 Development system experience .. 103

9.2.4 Target system experience ... 104

9.3 Development support characteristics .. 104
9.3.1 Development system volatility .. 104

9.3.2 Practices/methods volatility ... 105

9.4 Management characteristics .. 105

vii

9.4.1 Multiple security classifications... 105

9.4.2 Multiple development organizations .. 105

9.4.3 Multiple development sites .. 106

9.4.4 Resources and support location.. 106

Section 10 Product Characteristics Evaluation .. 108
10.1 Product complexity ... 108
10.2 Display requirements .. 110
10.3 Rehosting requirements .. 111
10.4 Memory constraints .. 111
10.5 Required reliability ... 112
10.6 Real-time performance requirements .. 113
10.7 Requirements volatility ... 113
10.8 Security requirements ... 115

Appendix A Acronyms ... 116

Appendix B Terminology ... 122

Appendix C Bibliography .. 129

Appendix D Software Life Cycle Approaches .. 136
D.1 Waterfall .. 136
D.2 Spiral development .. 137
D.3 Evolutionary development ... 137
D.4 Incremental development ... 138
D.5 Agile development (Extreme programming) ... 138
D.6 Rapid application development .. 139
D.7 Other approaches ... 139

Appendix E Software Estimating Models ... 141
E.1 Analogy models .. 142
E.2 Expert judgment models ... 142

E.2.1 Delphi method ... 143

E.2.2 Wideband delphi method ... 144

E.3 Bottom-up estimating ... 144

viii

E.4 Parametric models .. 145
E.5 Origins and evolution of parametric software models ... 145
E.6 First-order models .. 146
E.7 Second-order models .. 148
E.8 Third-order models ... 149

Appendix F System-Level Estimate Case Study .. 152
F.1 HACS baseline size estimate .. 152

F.2 HACS size growth calculation ... 155

F.3 HACS effort calculation ... 156

F.4 HACS Reality check ... 158

F.5 HACS development effort allocation ... 159

F.6 HACS maintenance effort calculation .. 160

Appendix G Component-Level Estimate Case Study .. 162
G.1 HACS baseline size estimate ... 162
G.2 HACS size estimate ... 163
G.3 HACS size growth calculation ... 165
G.4 HACS environment .. 167

G.4.1 HACS developer capability .. 167
G.4.2 Personnel evaluation ... 167

G.4.3 Development environment .. 168

G.4.4 HACS product impact ... 168

G.4.5 HACS effective technology constant .. 169

G.5 HACS development effort and schedule calculations ... 169
G.6 Verify HACS estimate realism .. 171
G.7 Allocate HACS development effort and schedule ... 172

G.7.1 HACS effort allocation ... 172

G.7.2 Schedule allocation ... 174

G.8 Allocate HACS maintenance effort ... 175

Appendix H The Defense Acquisition System .. 178
H.1 Basic definitions ... 179
H.2 Acquisition authorities ... 179
H.3 Acquisition categories .. 179

ix

H.3.1 ACAT I ... 180

H.3.2 ACAT II .. 180

H.3.3 ACAT III ... 181

H.3.4 ACAT IV ... 181

H.3.5 Abbreviated Acquisition Programs (AAPs) .. 181

H.4 Acquisition management framework ... 181
H.4.1 Framework elements ... 182

H.4.2 User needs and technology opportunities ... 182

H.4.3 Pre-systems acquisition ... 183

H.4.3.1 Concept refinement phase .. 183
H.4.3.2 Milestone A .. 184
H.4.3.3 Technology development phase ... 184
H.4.3.4 Milestone B .. 185

H.4.4 Systems acquisition ... 185

H.4.4.1 System development and demonstration.. 185
H.4.4.2 Milestone C .. 186
H.4.4.3 Production and deployment ... 186

H.4.5 Sustainment ... 187

H.4.5.1 Sustainment effort .. 187
H.4.5.2 Disposal effort .. 188

H.5 Cost analysis .. 188
H.5.1 Cost estimating .. 189

H.5.2 Estimate types ... 190

H.5.2.1 Life-cycle cost estimate ... 190
H.5.2.2 Total Ownership Cost .. 190
H.5.2.3 Analysis of Alternatives ... 191
H.5.2.4 Independent Cost Estimate... 191
H.5.2.5 Program Office Estimate (POE) .. 191
H.5.2.6 Component Cost Analysis .. 191
H.5.2.7 Economic Analysis .. 192

H.6 Acquisition category information .. 192
H.7 Acquisition references ... 194

H7.1 Online resources ... 194

H7.2 Statutory information ... 194

x

H7.3 Acquisition decision support systems .. 198

Appendix I Data Collection .. 199
I.1 Software data collection overview .. 199

I.1.1 Model comparisons ... 199

I.1.2 Format ... 201

I.1.3 Structure .. 202

I.2 Software data collection details ... 202
I.3 CSCI description ... 202

I.3.1 Requirements .. 204

I.3.2 Systems integration ... 204

I.4 Size data ... 205
I.4.1 Sizing data .. 205

I.4.1.1 Source code (KSLOC) ... 205
I.4.1.2 Reuse adjustments ... 205
I.4.1.3 Software source ... 206
I.4.1.4 Function points .. 206
I.4.1.5 Programming source language .. 206

I.5 Development environment data ... 206
I.6 Cost, schedule data .. 207
I.7 Technology constants .. 208
I.8 Development environment attributes .. 209

I.8.1 Personnel .. 209

I.8.2 Support .. 214

I.8.3 Management ... 222

I.8.4 Product .. 225

xi

List of Figures
 Figure # Description Page
 Figure 1-1 Achievable development schedule 5
 Figure 1-2 Development environment facets 6
 Figure 2-1 Defense acquisition management framework 10
 Figure 2-2 Waterfall development 14
 Figure 2-3 Software product activities relationship 14
 Figure 2-4 Computer software architecture 17
 Figure 3-1 Achievable effective size and schedule 24
 Figure 3-2 Software elements and relationship to estimate type 26
 Figure 4-1 Effective size growth distribution 30
 Figure 5-1 Rayleigh-Norden project staffing profile 41
 Figure 5-2 Effects of improper staffing 42

Figure 6-1 Source of code taxonomy 50
 Figure 6-2 Black box description 51
 Figure 6-3 Normal distribution 52
 Figure 6-4 Impact of structure on effective size 54
 Figure 6-5 Effort required to incorporate changes 55
 Figure 6-6 Historic project data basis for growth algorithm 58
 Figure 6-7 Modified Holchin growth algorithm 59
 Figure 6-8 Effective size growth distribution 62
 Figure 6-9 Function point system structure 65
 Figure 6-10 State transition model 71
 Figure 8-1 Basic technology constant range 86
 Figure 8-2 Basic technology constant distribution 87
 Figure 8-3 Productivity gains from 1960 to present 87
 Figure 8-4 Learning curve impact 90
 Figure 8-5 Impact of Application Experience on development effort 91
 Figure 8-6 CMMI rating improvement over period 1987 to 2002 92
 Figure 8-7 Components of communication 94
 Figure 9-1 Learning curve impact 101
 Figure 9-2 Impact of programming language experience on development 102
 Figure 9-3 Impact of practices and methods experience on development 103
 Figure 9-4 Impact of development system experience on development 103
 Figure 9-5 Impact of target system experience on development 104
 Figure 10-1 Software complexity illustration 109
 Figure B-1 Rayleigh staffing profile 126
 Figure D-1 Software waterfall process 136
 Figure D-2 Spiral development process 137
 Figure D-3 Evolutionary development process 138
 Figure D-4 Incremental development process 138
 Figure D-5 Agile development process 139
 Figure H-1 Defense Acquisition System 177
 Figure H-2 Acquisition Oversight 179
 Figure H-3 Defense Acquisition Management Framework 180
 Figure H-4 User Needs Activities 181
 Figure H-5 Pre-Systems Acquisition Activity 182
 Figure H-6 Systems Acquisition Activity 183
 Figure H-7 Production and Deployment Phase 186
 Figure H-8 Operations and Support Phase 186
 Figure H-9 Life Cycle Cost Composition 187

xii

List of Tables
 Table # Description Page
 Table 3-1 Typical productivity factors by size and software type 22
 Table 4-1 System concept information 27
 Table 4-2 Stratification of complexity data 29
 Table 4-3 Maximum software growth projections as a function of maturity and complexity 31
 Table 4-4 Mean software growth projections as a function of maturity and complexity 31
 Table 4-5 Typical productivity factors by size and software type 32
 Table 4-6 Electronic Systems Center reliability categories 33
 Table 4-7 Definition of complexity/reliability categories 33
 Table 4-8 Productivities for military applications by category 34
 Table 4-9 Total project effort distribution as a function of product size 35
 Table 5-1 Computer Software Configuration Item Size Estimates 39
 Table 5-2 Total project effort distribution as a function of product size 47
 Table 5-3 Approximate total schedule breakdown as a function of product size 48
 Table 6-1 Code growth by project phase 59
 Table 6-2 Modified Holchin maturity scale 60
 Table 6-3 Mean growth factors for normal complexity values as a function of maturity 61
 Table 6-4 Maximum growth factors for normal complexity values as a function of maturity 61
 Table 6-5 Function point rating elements 65
 Table 6-6 Table of weights for function point calculations 67
 Table 6-7 Ranking for Internal Logical and External Interface Files 67
 Table 6-8 Unadjusted function point calculation 68
 Table 6-9 Ranking for External Inputs 68
 Table 6-10 Ranking for External Outputs 69
 Table 6-11 Ranking for External Inquiries 69
 Table 6-12 Ranking for Transforms 70
 Table 6-13 Unadjusted function point calculation 71
 Table 6-14 General System Characteristics definition 72
 Table 6-15 General System Characteristic ratings 72
 Table 6-16 Online Data Entry rating definitions 73
 Table 6-17 Function Point to Source Lines of Code conversion 74
 Table 7-1 Typical productivity factors by size, type, and complexity value 79
 Table 7-2 Typical productivity factors by size and software type 79
 Table 7-3 Definition of complexity/reliability categories 81
 Table 7-4 Productivity for military applications by category 81
 Table 7-5 Productivity for military applications as a function of personnel capability 81
 Table 7-6 Relationship between Ck and PI values 82
 Table 7-7 Typical PI ranges for major application type from the QSM database 83
 Table 8-1 Analyst capability ratings 89
 Table 8-2 Programmer capability ratings 89
 Table 8-3 Traditional use of modern practices rating 91
 Table 8-4 Relationship between CMMI and MODP ratings 92
 Table 8-5 Modern tool categories and selection criteria 93
 Table 8-6 Use of automated tools support rating 93
 Table 9-1 Programming language mastery time 102
 Table 9-2 Development system volatility ratings 104
 Table 9-3 Practices/methods volatility ratings 105
 Table 9-4 Multiple security classifications ratings 105
 Table 9-5 Multiple development organizations ratings 105
 Table 9-6 Multiple development site ratings 106
 Table 9-7 Resources and support location ratings 106
 Table 10-1 Stratification of complexity data 108
 Table 10-2 Complexity rating matrix 110

xiii

 Table # Description Page
 Table 10-3 Special display requirements ratings 110
 Table 10-4 Rehosting requirements ratings 111
 Table 10-5 Memory constraint ratings 111
 Table 10-6 Required reliability ratings 112
 Table 10-7 Real time operation ratings 113
 Table 10-8 Requirements volatility ratings 114
 Table 10-9 Security requirements ratings 115
 Table E-1 Comparison of major software estimating methods 142
 Table E-2 Typical productivity factors by size and software type 147
 Table E-3 Environment factors used by common third-order estimation models 150
 Table F-1 Baseline description of case study at concept stage 152
 Table F-2 Case study unadjusted function point calculation 153
 Table F-3 Case study general system characteristics ratings 153
 Table F-4 Function point to Source Lines Of Code conversion 154
 Table F-5 Baseline description of case study at concept stage 154
 Table F-6 Software growth projections as a function of maturity and complexity 155
 Table F-7 Baseline description of case study at concept stage 155
 Table F-8 Definition of complexity/reliability categories 156
 Table F-9 Productivity values for military applications by category 156
 Table F-10 Productivity values for case study derived from the ESC database 157
 Table F-11 Comparison of cost with mean and maximum size growth using ESC data 157
 Table F-12 Comparison of cost with mean and maximum size growth using table 158
 Table F-13 Comparison of worst case from component-level and system level 159
 Table F-14 Total project effort distribution as a function of product size 159
 Table F-15 Total project effort distribution for nominal case study development 160
 Table F-16 Maximum effort analysis from system level including maintenance 161
 Table G-1 Baseline description of case study at start of requirements review 162
 Table G-2 Case study unadjusted function point calculation 163
 Table G-3 Case study general system characteristics ratings 164
 Table G-4 Baseline description of case study at start of requirements review 165
 Table G-5 Software growth projections as a function of maturity and complexity 166
 Table G-6 Baseline description of case study at start of requirements development 166
 Table G-7 Parameter values for basic capability estimate calculation 167
 Table G-8 Personnel parameter values for case study 167
 Table G-9 Development environment parameter values for case study 168
 Table G-10 Product impact parameter values for case study 168
 Table G-11 Technology constant values for case study 169
 Table G-12 Nominal effort and schedule analysis of case study at the component level 170
 Table G-13 Worst-case effort and schedule analysis of case study at component level 170
 Table G-14 Total project effort distribution for case study 172
 Table G-15 Nominal effort allocation for the case study at the component level 173
 Table G-16 Approximate schedule breakdown as a function of product size 174
 Table G-17 Nominal schedule allocation for the case study at the component level 175
 Table G-18 Nominal component level cost analysis of case study maintenance 176
 Table H-1 DoD Instruction 5000.2 Acquisition Categories 192
 Table H-2 SECNAV Instruction 5000.2C Acquisition Categories 193
 Table I-1 Estimating model parameter comparison 200
 Table I-2 Computer Software Configuration Item information 202
 Table I-3 Project summary data 202
 Table I-4 Requirements data 204
 Table I-5 System integration data 204
 Table I-6 Source code sizes 205
 Table I-7 Reuse data 206
 Table I-8 Reuse source 206
 Table I-9 Function point data 206

xiv

 Table # Description Page
 Table I-10 Source language 206
 Table I-11 Environment data 207
 Table I-12 Development effort and schedule data 208
 Table I-13 Technology constants 208
 Table I-14 Analyst Capability (ACAP) rating values 209
 Table I-15 Programmer Capability (PCAP) rating values 210
 Table I-16 Productivity Factor (PROFAC) rating values 210
 Table I-17 Application Experience (AEXP) rating values 211
 Table I-18 Development System Experience (DEXP) rating values 212
 Table I-19 Programming Language Experience (LEXP) rating values 212
 Table I-20 Practices and Methods Experience (PEXP) rating values 213
 Table I-21 Target System Experience (TEXP) rating values 213
 Table I-22 Development System Complexity (DSYS) rating values 214
 Table I-23 Development System Volatility (DVOL) rating values 215
 Table I-24 Modern Practices use (MODP) rating values 216
 Table I-25 Process Improvement (PIMP) rating values 217
 Table I-26 Practices/methods Volatility (PVOL) rating values 218
 Table I-27 Reusability level required (RUSE) rating values 219
 Table I-28 Required Schedule (SCED) rating values 219
 Table I-29 Automated tool support levels of automation 220
 Table I-30 Automated tool use (TOOL) rating values 221
 Table I-31 Multiple Classification Levels (MCLS) rating values 222
 Table I-32 Multiple Development Organizations (MORG) rating values 223
 Table I-33 Multiple Development Sites (MULT) rating values 224
 Table I-34 Personnel Continuity (PCON) rating values 224
 Table I-35 Product Complexity (CPLX) rating values 225
 Table I-36 Database size rating values 226
 Table I-37 Special Display requirements (DISP) rating values 227
 Table I-38 Development Re-hosting (HOST) rating values 228
 Table I-39 External Integration (INTEGE) requirements rating values 229
 Table I-40 Internal Integration (INTEGI) requirements rating values 229
 Table I-41 Target System Memory Constraints (MEMC) rating values 230
 Table I-42 Software Platform (PLAT) rating values 230
 Table I-43 Required Software Reliability (RELY) rating values 231
 Table I-44 Real-time operations requirements (RTIM) rating values 232
 Table I-45 System Requirements Volatility (RVOL) rating values 232
 Table I-46 System Security Requirement (SECR) rating values 233
 Table I-47 System CPU Timing Constraint (TIMC) rating values 235
 Table I-48 Target System Volatility (TVOL) rating values 236

xv

List of Equations
 Equation # Description Page
 Equation 3-1 First-order estimating model 21
 Equation 3-2 Simple size value 22
 Equation 3-3 Component-level estimating model 25
 Equation 3-4 Single CSCI development schedule approximation 26
 Equation 4-1 System-level estimating model 27
 Equation 4-2 Single CSCI development schedule approximation 27
 Equation 4-3 Total effort relationship 35
 Equation 4-4 Enhancement effort component 37
 Equation 4-5 Knowledge retention effort heuristic 37
 Equation 4-6 Steady-state maintenance effort 38
 Equation 5-1 Component-level development effort 39
 Equation 5-2 Component development schedule 40
 Equation 5-3 Rayleigh-Norden staffing profile relationship 42
 Equation 5-4 Basic technology constant 44
 Equation 5-5 Effective technology constant 45
 Equation 5-6 General component-level effort 45
 Equation 5-7 Development schedule 46
 Equation 5-8 Alternate schedule equation 46
 Equation 5-9 Total effort 47
 Equation 6-1 Mean size 53
 Equation 6-2 Standard deviation 53
 Equation 6-3 Adaptation adjustment factor 56
 Equation 6-4 Size adjustment factor 56
 Equation 6-5 Effective size (Jensen-based) 56
 Equation 6-6 Effective size (COCOMO-based) 57
 Equation 6-7 Ratio of development cost to development time 59
 Equation 6-8 Growth relationship (minimum) 60
 Equation 6-9 Growth relationship (maximum) 60
 Equation 6-10 Effective size growth 60
 Equation 6-11 Total size growth 61
 Equation 6-12 Effective size 61
 Equation 6-13 Effective size growth 62
 Equation 6-14 Mean growth size 63
 Equation 6-15 Value adjustment factor 73
 Equation 6-16 Adjusted function point count 73
 Equation 6-17 Function points to source lines of code conversion 74
 Equation 6-18 Effective size 75
 Equation 7-1 Development effort 77
 Equation 7-2 Hours per source line of code 77
 Equation 7-3 General form of SLIM® software equation 82
 Equation 7-4 Productivity factor relationship 82
 Equation 7-5 Development effort for upgrade 83
 Equation 7-6 Development schedule 84
 Equation 8-1 Basic technology constant 94
 Equation 8-2 Productivity factor 94
 Equation 10-1 Complexity function 108
 Equation E-1 First-order estimating model 147
 Equation E-2 Effective size 147
 Equation E-3 Second-order estimating model 148
 Equation E-4 Effective size 148
 Equation E-5 Third-order estimating model 149
 Equation F-1 Function point value adjustment factor 153

xvi

 Equation # Description Page
 Equation F-2 Adjusted function point count 154
 Equation F-3 Total software source lines of code count 154
 Equation F-4 Total effort relationship 159
 Equation G-1 Function point value adjustment factor 164
 Equation G-2 Adjusted function point count 164
 Equation G-3 Total software source lines of code count 164
 Equation G-4 Mean size growth factor 166
 Equation G-5 Maximum growth size 166
 Equation G-6 Productivity factor 169
 Equation G-7 Median productivity factor 169
 Equation G-8 Total effort 173
 Equation I-1 Development effort 200
 Equation I-2 Development productivity 206

xvii

Acknowledgements

The size of this guidebook hardly represents the amount of effort expended to develop it. Since May 2005,
nearly five person years have gone into the research, writing, editing, and production.

 We wish to thank Susan Wileman of the Naval Center for Cost Analysis (NCCA), specifically for her
confidence in our experience and knowledge and her support over the years during the development of the
guidebook.

We appreciate Susan, John Moskowitz, Mike Tran, and others for the reviews, discussions, and feedback
during the many months of writing. We offer our gratitude to members of the United States Air Force
Software Technology Support Center (STSC) for their expert editing and proof-reading: Thomas Rodgers,
Gabriel Mata, Daniel Keth, Glen Luke, and Jennifer Clement. We offer a special thanks to Dr. David A.
Cook, Dr. James Skinner, and Teresa Brown for their singular knowledge and perspective in the technical
review. The final review conducted by the CrossTalk editors, namely Drew Brown and Chelene Fortier-
Lozancich, uncovered a myriad of fine points we overlooked or assumed everyone would know or
understand.

Most significantly, we acknowledge the extensive knowledge and experience of Dr. Randall W. Jensen
applied in writing and refining this guidebook into what, arguably, will become a standard within the cost
estimating community. Additional writing, editing, and final production by Leslie (Les) Dupaix and Mark
Woolsey were also key efforts in creating this volume. We also wish to acknowledge the Defense
Acquisition University for providing the basis of the acquisition related portions of the guidebook.

Finally, we want to thank our spouses, families, and anyone else, who would listen to our repetitive
discussions on topics within the guidebook, endured us working on it at home or during vacations, and
were always interested (or at least pretended to be) in our efforts to create a useful resource for software
cost estimators.

Section 1
Introduction

The term “software crisis” refers to a set of problems that highlight the need
for changes in our existing approach to software development. The term
“software crisis” originated sometime in the late 1960s about the time of the
1968 NATO Conference on Software Engineering. One of the most
dominant and serious complaints arising from the software crisis was the
inability to estimate, with acceptable accuracy, the cost, resources, and
schedule required for a software development project.

Crisis is a strong word. It suggests a situation that demands resolution. The
conditions that represent the crisis will be altered, either toward favorable
relief or toward a potential disaster. According to Webster’s definition, a
crisis is “a crucial or decisive point or situation.” By now, the crisis should
have been resolved one way or another.

A notion pervading the conference was that we can engineer ourselves out
of any problem. Hence, the term “software engineering” was coined. One
of the significant conference outputs was a software engineering
curriculum. The curriculum happened to be identical to the computer
science curriculum of that day.

A list of software problems was presented as major development concerns
at the 1968 NATO Conference. The problem list included software that
was:

• Unreliable
• Delivered late
• Prohibitive in terms of modification costs
• Impossible to maintain
• Performing at an inadequate level
• Exceeding budget costs

The software development problems listed in 1968 are still with us today.
Each of these complaints can be traced to the inability to correctly estimate
development costs and schedule. Traditional intuitive estimation methods
have consistently produced optimistic results which contribute to the all too
familiar cost overruns and schedule slips. In retrospect, the term exigence1

Most humans, especially software developers, are inherent optimists. When
was the last time you heard something like, “It can’t be that bad,” “It
shouldn’t take more than two weeks to finish,” or, best of all, “We are 90
percent complete?” Estimates need to be based on facts (data), not warm
feelings or wishful thinking. In other words, hope is not a management
strategy, nor is it an estimating approach.

fits the situation better than “crisis” since there is no discernable point of
change for better or worse.

1 Exigence: The state of being urgent or pressing; urgent demand; urgency; a pressing
necessity.

Predicting is very hard, especially when it
is about the future.

 Yogi Berra

…It was also becoming painfully
evident that estimating the cost of
technologically state-of-the-art
projects was an inexact science.
The experts, in spite of their
mountains of numbers, seemingly
used an approach descended from
the technique widely used to weigh
hogs in Texas. It is alleged that in
this process, after catching the hog
and tying it to one end of a teeter-
totter arrangement, everyone
searches for a stone which, when
placed on the other end of the
apparatus, exactly balances the
weight of the hog. When such a
stone is eventually found, everyone
gathers around and tries to guess
the weight of the stone. Such is the
science of cost estimating. But
then, economics has always been
known as the dismal science.

 Augustine’s Laws

2

The cost and schedule estimating problem can be described by the following
statement:

More software projects have gone awry for lack of calendar time than
for all other causes combined. Why is this cause of disaster so
common?

First, our techniques of estimating are poorly developed. More
seriously, they reflect an unvoiced assumption which is quite untrue, i.e.,
that all will go well.

Second, our estimating techniques fallaciously confuse effort with
progress, hiding the assumption that men and months are
interchangeable.

Third, because we are uncertain of our estimates, software managers
often lack the courteous stubbornness of Antoine’s chef.

Fourth, schedule progress is poorly monitored. Techniques proven and
routine in other engineering disciplines are considered radical
innovations in software engineering.

Fifth, when schedule slippage is recognized, the natural (and
traditional) response is to add manpower. ’Like dousing a fire with
gasoline, this makes matters worse, much worse. More fire requires
more gasoline and thus begins a regenerative cycle that ends in
disaster.’2

The rapidly increasing cost of software has led customers for these products
to become less willing to tolerate the uncertainty and losses associated with
inaccurate cost and schedule estimates, unless the developer is willing to
accept a significant portion of that risk. This customer pressure emphasizes
the need to use an estimating method that can be applied early in the
software development when tradeoff studies and investment decisions are
made. The estimating method must consider the characteristics of the
development organization and the environmental effects imposed by the
development task, as well as the application size and complexity.

Estimating is magic for most estimators and managers. Well-known science
fiction author Arthur C. Clarke’s Third Law3

Estimating tools produce estimates from a set of inputs that describe the
software and the environment. The result is a development cost and
schedule. If neither the estimator, nor the manager, understands the
algorithm behind the estimate, then the estimate has crossed into the realm of
magic. The result is a development cost and schedule estimate – which is
never wrong. Estimate accuracy appears to increase with the number of
significant digits.

 states: “Any sufficiently
advanced technology is indistinguishable from magic.” This illustrates one
of the primary problems with software estimating today. The “magic”
creates an environment of unreasonable trust in the estimate and lack of
rational thought, logical or otherwise.

With magic we expect the impossible, and so it is with estimating as well.
When something is magic, we don’t expect it to follow logic, and we don’t
apply our common sense. When the estimate is not the cost and schedule we

2 Brooks, F.P. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, Reading, MA: 1975.
3 Clarke, Arthur C. Clarke. Profiles of the Future. 1961.

es·ti·mate
To make a judgment as to the
likely or approximate cost,
quality, or extent of; calculate
approximately…estimate may
imply judgment based on rather
rough calculations.

 American Heritage Dictionary

Antoine's is a New Orleans
restaurant whose menu states: good
cooking takes time. If you are made
to wait, it is to serve you better and
to please you.

3

want, we can simply change the inputs to the algorithm and produce the
estimate we desire. Since the tool has magical properties, we can suspend
reality and make any estimate come true. That is why so many projects
overrun and we consistently blame the failure on the projects, not the
estimates.

As demonstrated, software cost estimation is a discipline sometimes equated
with mystical forms of prognostication, in which signs and indications are
used to foretell or predict the future. Some suggest that a venerable person
of recognized experience and foresight with far-seeing wisdom and prudence
is required to create accurate cost estimates. These points have merit as cost
estimation may fittingly be considered a blend of art and science. Yet, with
proper knowledge and experience wisely applied, the discipline of software
cost estimating becomes more science than knack.

Several cost and schedule estimation methods have been proposed over the
last 25 years with mixed success due, in part, to limitations of the estimation
models. A significant part of the estimate failures can be attributed to a lack
of understanding of the software development environment and the impact of
that environment on the development schedule and cost. The environment
imposed by the project manager is a major driver in the software equation.

Organizations need both managers and estimators. Managers make
infrequent estimates to support their decisions. Estimators, like any
specialist, need to perform frequent estimates to track development progress,
increase estimating experience, and maintain process and tool proficiency.

Software cost estimating is an essential part of any system acquisition
process. Fiscal constraints, the mission of service-level and command cost
agencies, and program office responsibilities further highlight the
importance of a solid understanding of software cost estimating principles
and the need for credible resources.

Estimation seeks to answer questions such as:

• Is the estimate reasonable?

• Has a similar system been developed before?

• How long should the development take?

• How much should the development cost?

• How does size, cost, and schedule data from other
projects relate to this system?

• If developers claim their software development
productivity is 1,000 lines of source code per
month, are the claims realistic?

A sound software cost estimate is developed by employing recognized and
accepted estimating methodologies. As an analyst, you can determine that
your estimate is credible by using historical data, cost estimating
relationships, and having an understanding of the tools or models used.

Estimating the cost, schedule and resources for a software development
project requires training, experience, access to historical information related
to the software domain under consideration, and the confidence to commit to
the estimate even when the project information is qualitative and lacks detail.
All software estimates carry inherent risks from several views. For example,
all estimating tools are the results of regression analysis (curve fitting) to
historic project data that is inconsistent in nature. Data is collected from

Programming a computer
does require intelligence.
Indeed, it requires so much
intelligence that nobody really
does it very well. Sure, some
programmers are better than
others, but we all bump and
crash around like overgrown
infants. Why? Because
programming computers is by
far the hardest intellectual
task that human beings have
ever tried to do. Ever.

G.M. Weinberg, 1988

4

many sources, each with its own definition of size, complexity, productivity,
and so on. Knowledge of the software project is somewhat subjective in
terms of size, complexity, the environment, and the capabilities of the
personnel working on project development.

Risk represents the degree of uncertainty in the cost and schedule estimates.
If the scope of the system under development is poorly understood, or the
software requirements are not firm, uncertainty can become extreme.
Software requirements in an ideal world should be complete and specified at
a level that is sufficient to the maturity of the system. Interfaces should also
be complete and stable to reduce the instability of the software development
and the development estimate.

1.1 Development constraints
There is a model of software development as seen from the project control
point of view. This model has only four variables:

• Cost
• Schedule
• Quality
• Scope

The shareholders (users, customers, etc. – all external to the development)
are allowed to set three of the four variables; the value of the fourth variable
will be determined by the other three.

Some managers attempt to set all four variables, which is a violation of the
rules. When one attempts to set all four, the first visible failure is a decrease
in product quality. Cost and schedule will then increase in spite of our most
determined efforts to control them. If we choose to control cost and
schedule, quality and/or scope become dependent variables.

The values for these attributes cannot be set arbitrarily. For any given
project, the range of each value is constrained. If any one of the values is
outside the reasonable range, the project is out of control. For example, if
the scope (size) is fixed, there is a minimum development time that must be
satisfied to maintain that scope. Increasing funding to decrease the schedule
will actually increase the schedule while increasing the project cost.

Software estimating tools allow us to make the four variables visible so we
can compare the result of controlling any, or all, of the four variables (look at
them as constraints) and their effect on the product.

1.2 Major cost factors
There are four major groups of factors that must be considered or accounted
for when developing a software cost and schedule estimate. The factor
groups are: (1) effective size, (2) product complexity,
(3) development environment, and (4) product characteristics.

The following sections briefly describe each of the major factor groups.

Project Uncertainty Principle

If you understand a project, you
won’t know its cost, and vice versa.

Dilbert (Scott Adams)

5

1.2.1 Effective size
Effective size is a quantification of the effort required to produce a software
product. It does not directly correlate with the physical product size.
Software size is the most important cost and schedule driver, yet it is the
most difficult to determine. Size prediction is
difficult enough that many methods have been
created to alleviate the problem. These measures
include effective source lines of code (ESLOC),
function points, object points, and use cases, as
well as many variants.

Size has a major impact on the management of
software development in terms of cost and
schedule. An Aerospace Corporation study by
Long et al4

The Aerospace study also showed that schedule is not arbitrary. There is an
apparent minimum development schedule related to size. The assumption
that by front-loading project staff the project will decrease its schedule
below a minimum development time is faulty. This is sometimes referred to
as the software Paul Masson Rule; that is, “We will deliver no software
before its time.”

 that examined 130 military software
development projects demonstrates some of the
constraints on development imposed by the
magnitude of the software project. Of the 130
projects shown in Figure 1-1, no Computer
Software Configuration Item (CSCI) over 200
thousand effective source lines of code (KESLOC)
was successfully completed or delivered. A project
effective size of 200 KESLOC requires a team of
approximately 100 development and test personnel, a development schedule
of four years, and nearly 3,000 person months of effort. The average
turnover rate for software personnel is less than four years. Managing a
team of 100 people in a single development area is not trivial.

Effective software size is discussed in detail in Section 6.

1.2.2 Product complexity
Software complexity is an all-embracing notion referring to factors that
decide the level of difficulty in developing software projects. There are
many facets to the value we refer to as complexity. Here we will only touch
upon the effects of product complexity and its importance in cost and
schedule estimation. First, complexity limits the rate at which a project can
absorb development personnel. It also limits the total number of people that
can effectively work on the product development. Small development teams
are actually more productive per person than large teams; hence, the limiting
action of complexity correlates with higher productivity. At the same time,
the skill set necessary to build an operating system is not interchangeable
with that of a payroll system developer.

Complexity is discussed in detail in Section 10.

4 Long, L., K. Bell, J. Gayek, and R. Larson. “Software Cost and Productivity
Model.” Aerospace Report No. ATR-2004(8311)-1. Aerospace Corporation. El
Segundo, CA: 20 Feb 2004.

Figure 1-1: Achievable development schedule based on 130 military

software projects

We will sell no wine before its time.

Paul Masson advertisement, 1980

6

1.2.3 Development environment
The development environment is a major, yet often ignored, factor in
development productivity and the resulting development cost and schedule.
The environment may be divided into two areas: developer capability and
project-specific development environment. At the core of the development
environment measure is the raw capability of the developer. This includes
application experience, creativity, ability to work as a team, and the use of
modern practices and tools. It is hard to directly assess the capability or the
environment, but by looking at the individual, independent facets of the
environment (shown in Figure 1-2), a cohesive, rational measure can be
obtained.

The development environment is discussed in detail in Sections 8 (developer
capability) and 9 (development environment).

For estimates conducted early in the acquisition – when the developer and
environment are unknown – typical productivity factors that assume a
generic developer and environment can be used to obtain a “ballpark”
estimate. This technique is described in Section 7.

1.2.4 Product characteristics
Product characteristics describe the software product to be developed. These
characteristics are specific to a class of products; for example, a military
space payload. The characteristics include timing and memory constraints,
amount of real-time processing, requirements volatility, user interface
complexity, and development standards (among others). Development
standards, in turn, encompass the documentation, reliability, and test
requirements characteristics of a project.

The product characteristics generally limit or reduce the development
productivity. The characteristics for any application can be grouped into a
product template that simplifies a system-level estimate.

The elements of the product characteristics are discussed in detail in Section
10.

1.3 Software support estimation
Software support costs usually exceed software development costs, primarily
because software support costs involve much more than the cost of
correcting errors. Typically, the software product development cycle spans
one to four years, while the maintenance phase spans an additional five to 15
years for many programs. Over time, as software programs change, the
software complexity increases (architecture and structure deteriorate) unless
specific effort is undertaken to mitigate deterioration5

Software maintenance cost estimates in 1976 ranged from 50 to 75 percent
of the overall software life-cycle costs

.

6. The trend is about the same today in
spite of the rapid increase in product size over time. Historic project data7

5 Belady, L.M., and M.M. Lehman. “Characteristics of Large Systems.” Research
Directions in Software Technology. MIT Press. Cambridge, MA: 1979.

shows that a program with a software development cost of about $100 per

6 Boehm, B.W. “Software Engineering,” IEEE Transactions of Computers.
Dec.1976: 1226-1241.
7 Ibid., Boehm, B.W.

Figure 1-2: Development
environment facets

PROJECT

PROCESS PEOPLE

ENVIRONMENT

PROJECT

PROCESS PEOPLE

ENVIRONMENT

Murphy's Law is an adage that
broadly states that things will go
wrong in any given situation, if
you give them a chance. “If
there’s more than one possible
outcome of a job or task, and one
of those outcomes will result in
disaster or an undesirable
consequence, then somebody will
do it that way.”

7

source line can have long term maintenance costs that are near $4,000 per
source line.

Software maintenance is defined by Dr. Barry Boehm8

Software repair is another way of saying “corrective maintenance” – fixing
implementation, processing, and performance related to the specified
software requirements. These failures may surface after delivery of the
product in operational use. The repair can also be related to errors or
deficiencies known before the product was delivered, but deferred to
maintenance because of funding or schedule issues during development.
Maintenance costs during the period immediately following product delivery
are normally high due to errors not discovered during the software
development.

 as: "The process of
modifying existing operational software while leaving its primary functions
intact.” His definition includes two types of activities: software repair and
software enhancement.

Software enhancement results from software requirements changes during
and following product delivery. Software enhancement includes:

• Redevelopment or modification of portions of the existing software
product.

• Software adaptation (“adaptive”) to new processing or data
environments.

• Software performance and maintainability enhancements
(“perfective”).

In addition to repair and enhancement, the cost of maintenance must also
include the cost of maintaining knowledge of the software structure and
code. The cost of this knowledge retention for a large software system often
dominates the maintenance cost.

1.4 Guidebook overview
This guidebook is divided into major sections centered on key software
development cost estimating principles. The sections discussed include the
following:

• Software cost and schedule estimating introduction (Sections 1
& 2) – The history, art, and science behind developing reasonable
cost estimates.

• Software development process (Section 2) – The evolution of
software development, various methods or approaches, and key
issues.

• Levels of detail in software estimates (Section 3) – Guidelines
and theory to help determine the best or most appropriate method
for evaluating given data and formulating an estimate. The cost of
developing the system is just the tip of the iceberg when the cost
over the entire life of the program is considered.

• System level estimating process (Section 4) – A concise
introduction to the software cost estimating process at the system
level, taking place prior to knowledge of the software architecture.

8 Boehm, B.W. Software Engineering Economics Prentice-Hall. Englewood Cliffs,
NJ. 1981: 54.

8

This process assumes a generic developer and total effective
software size, including growth. Estimates include validation and
effort allocation.

• Component level estimating process (Section 5) – A concise
introduction to the software cost and schedule estimating process at
the component level using the effective component (CSCI) size
including growth, the developer capability and environment, and
product constraints to determine the development cost and schedule.
Estimates include cost and schedule validation, as well as effort and
schedule allocation.

• Estimating effective size (Section 6) – A key element in
determining the effort and subsequent cost and schedule is the size
of the software program(s) within the system. This section explains
two primary methods of size estimation: effective source lines of
code and function points.

• Productivity factor evaluation (Section 7) – Software
development effort estimates at the system level are dependent upon
the effective size and the generic developer productivity for the
given system type. Productivity factors can be derived from
historic industry data or from specific developer data (if available).

• Evaluating developer capability (Section 8) – An important factor
in a component level estimate is the developer’s capability,
experience, and specific qualifications for the target software
system. This section explains the attributes that define developer
capabilities in terms of efficiency or productivity.

• Development environment evaluation (Section 9) – The
development environment (management, work atmosphere, etc.)
and product traits (complexity, language, etc.), combined with the
developer’s skill and experience directly impact the cost of the
development. This section quantitatively describes the impacts of
the development environment in terms of productivity.

• Product characteristics evaluation (Section 10) – The product
characteristics (real-time operation, security, etc.) and constraints
(requirements stability, memory, CPU, etc.) reduce the development
efficiency and increase cost and schedule. This section
quantitatively describes the impacts of the product characteristics
on development cost and schedule and the associated estimates.

• Acronyms (Appendix A) – This appendix contains a list of the
acronyms used in the guidebook and by the estimating tools
supported by the guidebook.

• Terminology (Appendix B) – This section contains definitions and
terminology common to this guidebook and the software estimating
discipline.

• Bibliography (Appendix C) – This section contains a list of useful
resources for software development cost and schedule estimators.
The list also includes material useful for software development
planners and managers.

• Software life cycle approaches (Appendix D) – This appendix
provides background information describing the common software

9

development approaches and discusses topics such as spiral and
incremental development.

• Software estimating models (Appendix E) – This section
describes the myriad of estimate types and models available for the
software cost and schedule estimator.

• System-level estimate case study (Appendix F) – This section
walks the reader through a system-level estimate example,
incorporating the processes, practices, and background material
introduced in the core sections of the guidebook.

• Component-level estimate case study (Appendix G) – This
section, like the previous section, works through an in-depth
example at the component level.

• The Defense Acquisition System (Appendix H) – This appendix
provides background information describing the defense acquisition
framework and how software estimates fit into that process.

• Data collection (Appendix I) – Data collection (as highlighted in
the core sections) without efforts to validate and normalize it is of
limited value. This section provides guidelines, instructions, and
suggested formats for collecting useful data.

10

C
Concept

Refinement
Technology

Development
System Development

& Demonstration
Production &
Deployment

Operations &
Support

A B

Concept
Decision

Design
Readiness
Review

FRP
Decision
Review

LRIP/IOT&E

(Program
Initiation) IOC FOC

Pre-Systems Acquisition Systems Acquisition Sustainment

• Process entry at Milestones A, B, or C
• Entrance criteria met before entering phase
• Evolutionary Acquisition or Single Step to

Full Capability

User Needs &
Technology Opportunities

Figure 2-1: Defense Acquisition Management Framework

Section 2
Software Development Process

The phrase “software life cycle” became popular in the 1970s. The phrase
caught on and has remained in use because it conveys an impression of
multiple phases and extended life in the software development process. The
previously popular conception of computer programs as items that are
developed inside someone’s head, coded, and used for a day or 10 years
without change has frustrated most people in the industry at one time or
another. The facts are, and have been for some time, that coding represents
only a small percentage of the money and effort spent on a typical software
system.

One often-used effort division model assumes percentage split of 40/20/40
for the analysis/design-code-test/integration phases, respectively. Most
modern software estimating tools assume an effort division percentage of
40/20/40 or 40/30/30. If the maintenance phase is included, the relative
percentage for coding drops to an even lower value because maintenance
cost/time tends to exceed any other phase. Thus, the concept of a life cycle
is welcome and realistic because it calls attention to phases other than coding
and emphasizes the fact that software systems “live” a long, long time.

There are many representations of a life cycle. Each software industry
subculture has its own – or several – representations, and each representation
tends to be modified somewhat for specific projects. There are many generic
approaches that characterize the software development process. Some of the
approaches (process models) that are in use today are described in Appendix
D. A generic engineering process, known as the waterfall model, is used in
this section to describe the activities in the typical process.

2.1 The Defense Acquisition System
The software development process fits into a larger acquisition process
referred to as the Defense Acquisition Management Framework9

2.1.1 Framework elements

, which is a
continuum of activities that represent or describe acquisition programs. The
framework is represented by Figure 2-1.

9 DoD Instruction 5000.2. “Operation of the Defense Acquisition System.” May 12,
2003.

IEEE 12207
An Institute of Electrical and
Electronics Engineers
standard that establishes a
common framework for the
software life cycle process.

This officially replaced MIL-
STD-498 for the development
of DoD software systems in
August 1998.

Cost:
The expenditure of something,
such as time or labor, necessary
for the attainment of a goal.

Schedule:
A plan for performing work or
achieving an objective,
specifying the order and allotted
time for each part.

Researchers have already cast much
darkness on the subject and if they
continue their investigations, we shall
soon know nothing at all about it.

 Mark Twain

http://en.wikipedia.org/wiki/MIL-STD-498�
http://en.wikipedia.org/wiki/MIL-STD-498�
http://en.wikipedia.org/wiki/United_States_Department_of_Defense�

11

The Acquisition Management Framework is separated into three activities:
Pre-Systems Acquisition, Systems Acquisition, and Sustainment. These
activities are divided into five phases: Concept Refinement, Technology
Development, System Development & Demonstration, Production &
Deployment, and Operations & Support. The Phases in System Acquisition
and Sustainment are further divided into six efforts: System Integration,
System Demonstration, Low-Rate Initial Production (LRIP) or limited
deployment (if applicable), Full-Rate Production (FRP) and Deployment,
Sustainment, and Disposal.

The framework figure indicates key points in the process known as
milestones. A Milestone is the point at which a recommendation is made
and approval sought regarding starting or continuing an acquisition program
(i.e., proceeding to the next phase). The milestones established by DoDI
5000.2 are: Milestone A approves entry into the Technology Development
phase; Milestone B approves entry into the System Development and
Demonstration phase; and Milestone C approves entry into the Production
and Deployment phase. Also of note are the Concept Decision that approves
entry into the Concept Refinement phase; the Design Readiness Review that
ends the System Integration effort and continues the System Development
and Demonstration phase into the System Demonstration effort; and the Full
Rate Production Decision Review at the end of the Low Rate Initial
Production effort of the Production & Deployment phase that authorizes Full
Rate Production and approves deployment of the system to the field or fleet.

2.1.2 User needs and technology
opportunities
The user needs and technology opportunities effort is divided into two
primary areas, User needs activities and technology assessment. User need
activities consist of determining the desired capabilities or requirements of
the system and is governed by the Initial Capabilities Document (ICD). The
user needs activities also involve preparation of the Capability Description
Document (CDD) and the Capability Production Document (CPD).
Technology assessment examines multiple concepts and materiel approaches
to optimize the way the Department of Defense provides these capabilities.
The examination includes robust analyses that consider affordability,
technology maturity, and responsiveness.

2.1.3 Pre-systems acquisition
Pre-systems acquisition activities involve development of user needs,
science and technology efforts, and concept refinement work specific to the
development of a materiel solution to an identified, validated need. The
activities are governed by the ICD, the CDD and the CPD. The ICD, the
CDD and the CPD are created by the program acquisition office in
conjunction with “representatives from multiple DoD communities” that
assist in formulating broad, time-phased, operational goals, and describing
requisite capabilities.

2.1.3.1 Concept refinement phase
Concept refinement begins with the Concept Decision. Entrance into the
Concept refinement phase depends upon an approved Initial Capabilities

A detailed explanation of the
Defense Acquisition System and

the Acquisition Management
Framework can be found in

Appendix H.

12

Document and an approved plan for conducting an Analysis of Alternatives
(AoA) for the selected concept. The AoA is created by the program
acquisition office. The phase ends when the Milestone Decision Authority
approves the preferred solution resulting from the Analysis of Alternatives
and approves the associated Technology Development Strategy.

2.1.3.2 Milestone A
At this milestone, the Milestone Decision Authority approves the
Technology Development Strategy and sets criteria for the Technology
Development phase. If there is no predetermined concept and evaluation of
multiple concepts is needed, the Milestone Decision Authority will approve
a Concept Exploration effort. If there is an acceptable concept without
defined system architecture, the Milestone Decision Authority will approve a
Component Advanced Development effort.

2.1.3.3 Technology development phase
During the Technology Development phase, the Capability Development
Document is created. This document builds upon the Interface Control
Document and provides the necessary details to design the proposed system.
The project exits the phase when an affordable increment of useful capability
to the military has been identified, demonstrated in the relevant environment,
and can be developed within a short timeframe (usually less than five years).

2.1.3.4 Milestone B
The purpose of Milestone B is to authorize entry into the System
Development & Demonstration phase. Milestone B approval can lead to
either System Integration or System Demonstration depending upon the
maturity of the technology.

2.1.4 Systems acquisition
The activity is divided into two phases: System Development &
Demonstration and Production & Deployment.

2.1.4.1 System development & demonstration
The objective of the System Development and Demonstration phase is to
demonstrate an affordable, supportable, interoperable, and producible system
in its intended environment. The phase has two major efforts: System
Integration and System Demonstration. System Integration requires a
technical solution for the system. At this point, the subsystems are
integrated, the detailed design is completed, and efforts are made to reduce
system-level risks. The effort is guided by an approved Capability
Development Document which includes a minimum set of Key Performance
Parameters (KPPs). The program exits System Integration when the system
has been demonstrated using prototype articles or Engineering Design
Models and upon completion of a Design Readiness Review. Completion of
this phase is dependent upon a decision by the Milestone Decision Authority
to commit to the program at Milestone C or to end the effort.

2.1.4.2 Milestone C
The purpose of Milestone C is to authorize entry into: Low Rate Initial
Production, production or procurement (for systems that do not require Low
Rate Initial Production), or limited deployment for Major Automated

13

Information Systems or software-intensive systems with no production
components. A favorable Milestone C decision commits the DoD to
production of the system. At Milestone C, the Milestone Decision Authority
approves: the updated acquisition strategy, updated development
Acquisition Program Baseline, exit criteria for Low Rate Initial Production
or limited deployment, and the Acquisition Decision Memorandum
(ADM10

2.1.4.3 Production & deployment

).

The purpose of the Production and Deployment phase is to achieve an
operational capability that satisfies mission needs. The phase consists of the
Low Rate Initial Production effort, the Full-Rate Production decision review,
and the Full-Rate Production & Deployment effort. The decision to continue
to full-rate production, or limited deployment for Major Automated
Information Systems or software-intensive systems, requires completion of
Initial Operational Test and Evaluation and approval of the Milestone
Decision Authority.

2.1.5 Sustainment
The Sustainment activity has one phase, Operations & Support, consisting of
two major efforts: Sustainment and Disposal. The objective of this activity
is to provide cost-effective support for the operational system over its total
life cycle. Operations and Support begins when the first systems are
deployed. Since deployment begins in the latter portions of the Production
& Deployment phase, these two activities overlap. Later, when a system has
reached the end of its useful life, it needs to be disposed of appropriately.

2.2 Waterfall model
The waterfall model is the fundamental basis of most software development
approaches and serves well as a basis for describing the typical software
development processes. Note the word typical allows us to establish steps in
a process that are not strictly defined or dictated by DoD standards or
specifications. This section outlines steps that are part of the normal
engineering approach to solving problems and are followed in the
generalized waterfall development approach common to system
development (as shown in Figure 2-2). The products of each step of the
development process are indicated. These products are key elements in
supporting the product release and a means of measuring the current position
in the process.

10 The Acquisition Decision Memorandum (ADM) is not limited to Milestone C but
can be submitted during many points of the acquisition phase.

14

An alternate (and perhaps more revealing) way of presenting the steps or
phases of the software development process is by means of the Software V-
chart shown in Figure 2-3. The V-chart presents the traditional waterfall
process in more detail showing the steps and their relationship to each other.

Each step concludes with a formal review to determine the readiness to
proceed to the next process step. The requirements activity concludes with a
decision point at the Software Requirements Review (SRR) to determine
readiness to proceed to full-scale development and begin the high-level or
architectural design. The architectural design is evaluated at the Preliminary
Design Review (PDR) to determine readiness to proceed to the software
detail design. The detail design is reviewed at the Critical Design Review
(CDR) to determine readiness to move to the construction phase where the
software product is implemented and tested. Once the construction of the
software product is complete (computer software units [CSUs]), assembled
into Computer Software Components (CSCs), and components are
assembled into a product (CSCI), the software product is formally reviewed
and accepted at the Software Acceptance Review (SAR) and delivered to the
system integration activity.

Figure 2-3: Software product activities relationship to
integration and test activities

Figure 2-2: Waterfall development cycle

15

This is probably the best point to introduce two terms that cause continuing
confusion – verification and validation (V&V). Most people can’t tell the
difference between V&V. Verification refers to a set of activities that ensure
a product is implemented according to its specification, or design baseline.
Validation refers to a set of activities that ensures the product satisfies its
performance requirements established by the stakeholder. Boehm11

Verification: “Are we building the product right?”

simplified the definitions:

Validation: “Are we building the right product?”

The verification arrows in Figure 2-3 involve testing to ensure performance
meets the software requirements. The validation arrows at the top of the V
assure the product meets stakeholder requirements.

System integration is often beyond the scope of the software development
estimate and is included in the system (hardware and software) estimate.
However, the software maintenance estimate is typically part of the software
estimate.

Developing the software requirements is the first step in software
development. (Note that this critical first step is beyond the scope of the
software cost and schedule analysis and is included to define the source of
software requirements.) The system requirements are developed and a
portion (often large) of those requirements is allocated to software prior to
the System Design Review (SDR). The SDR decision reviews the system
requirements and the allocation of those requirements to hardware, software,
and user interaction. The SDR also determines the readiness to move to the
next step – the development of the software product.

The steps in the software waterfall process are:
• Planning (software requirements analysis).
• Requirements (CSCI requirements analysis and specification).
• Full scale development.

o Preliminary design (architecture design to PDR).
o Detail design (PDR to CDR).
o Construction (code and unit [CSU] development and test).
o Construction (component [CSC] integration and test).
o Construction (configuration item [CSCI] integration and test).

• System integration and test.
• Maintenance.

The following paragraphs contain a more detailed description of the steps in
the software waterfall development process shown previously in Figure 2-2.
These activities are important and are present in every development
approach, whether in the waterfall approach or not. The waterfall approach
has its critics, but, as will be seen, the process appears in one form or another
in almost every development approach.

2.2.1 Requirements analysis and specification
The second step in the system development process (the first step in the
software portion of the process) is to analyze the functions the software
subsystem(s) will perform and to allocate those functions to individual
CSCIs. The software development team completes the engineering

11 Boehm, B.W. Software Engineering Economics. Prentice-Hall, Inc. Englewood
Cliffs, NJ: 1981.

The most likely way for the world
to be destroyed, most experts
argue, is by accident. That’s
where we come in; we’re computer
professionals. We cause accidents.

Nathaniel Borenstein

16

requirements for each CSCI and the required interfaces. The requirements
analysis and specification culminate in a SRR. A complete list of
qualification and test requirements are also developed in this activity.

2.2.2 Full-Scale Development
Full-scale software development in the estimator’s world is represented by
the Figure 2-2 design and construction activities. The completed CSCI is
reviewed during the SAR at the conclusion of CSCI integration and test.
Successful conclusion of the SAR results in acceptance of the software
product by the customer or the system integration activity. The individual
phases of the full-scale development are described in the following
paragraphs.

The preliminary design creates the software product architecture. The
architecture defines each of the CSCs, allocates requirements to each CSC,
and defines the interfaces between the CSCs and the external system. The
activity culminates in a PDR to determine the readiness for advancement to
the detail design.

The detail design allocates requirements from each CSC and establishes the
design requirements for each CSU. The activity produces a design for each
CSU as well as internal interfaces between CSUs and interfaces to the higher
level CSCI. Formal qualification test planning continues and specific test
cases are developed. The activity concludes with a formal CDR which
reviews the design, the test plans, and critical design issues that have arisen
during the activity. Successful completion of the CDR is normally
considered the “go-ahead” decision for software production.

Software production “turns the corner” from design activities to integration
and testing act ivies as shown in Figure 2-3. During the code and unit test
activity, Software Product Specifications (SPSs) are drafted and the
production code is written for each CSU. The deliverable source code is
thoroughly tested since this is the one level that allows direct access to the
code. When the unit testing is successfully completed, the CSU is made
available for integration with the parent CSC.

Individual CSUs are then assembled into CSCs and tested at the component
level. Testing at this level is comprehensive and detailed because this is the
last opportunity to stress test the components (i.e., arrays out of bounds,
numbers out of range or negative when not expected, invalid inputs, and so
forth). When testing shows the CSC functions are performing correctly, the
CSCs are integrated into the product-level CSCI.

CSC integration is the final activity in the full-scale CSCI development.
Integration testing verifies performance of the entire software product
(CSCI) against the formal software requirements approved at the SRR. The
test is normally preceded by one or more Test Readiness Reviews (TRRs) to
determine if the CSCI is ready for the Formal Qualification Test (FQT). A
Formal Qualification Audit (FQA) verifies that all requirements have been
incorporated into the design and each requirement has been adequately
tested.

At the successful conclusion of the CSCI acceptance test, a formal SAR is
conducted prior to acceptance by the customer or the next higher level
system integration activity.

As soon as we started
programming, we found to our
surprise that it wasn’t as easy to
get programs right as we had
thought. Debugging had to be
discovered. I can remember the
exact instant when I realized that
a large part of my life from then
on was going to be spent in
finding mistakes in my own
programs.

 Maurice Wilkes

17

2.2.3 System Integration and Test
The final step in the system development process is system integration and
test. At this point in the development cycle, the software and hardware
configuration items are integrated into the final configuration. This includes
user (manuals) operations to determine if the system satisfies the system
level requirements before deployment in the operational phase. A full
description of system integration and testing is beyond
the scope of this guidebook.

2.3 Software development
products
It is important to review some software product
definitions that are used throughout the guidebook.
Important terms describing the product are graphically
presented in Figure 2-4. The software product can be a
standalone system or a subsystem contained within a
larger system structure. In any case, the product is the
root of the development structure (project). The
product consists of one or more Computer Software
Configuration Items (CSCIs). The CSCI relates
directly to the allocated software requirements. The
CSCI is the component normally used in the detailed
software development cost and schedule estimates.

The CSCI is generally constructed from one or more Computer Software
Components (CSCs) that are defined in the architecture design activity.

The CSC is generally made from a set of Computer Software Units (CSUs)
that are defined in the architectural and detail design activities. The CSU is
often a simple procedure or subroutine.

There are three documents that stand out as important in establishing the
development activities and schedule. These documents are: the Software
Development Plan (SDP), the Software Requirements Specification (SRS),
and the ICD. These three documents generally constitute the definition of a
CSCI and are described in subsequent paragraphs.

2.3.1 Software Development Plan
The SDP defines the dates, milestones, and deliverables that will drive the
development project. It defines who is responsible for doing what, and by
when. It also describes how the important development activities, such as
reviews and testing, will be performed. The activities, deliverables, and
reviews are described for each step of the development process. The major
sections of the SDP are described in the following subsections.

2.3.1.1 Project organization
This section of the SDP lists the performing organizations in the project and
describes their responsibilities. It includes how the project will be managed
and controlled, the processes and software development practices or
standards to be followed by the development team, and the procedures that
will be used for tracking and reporting progress.

CSC
(Component)

CSC
(Component)

CSC
(Component)

CSU
(Unit)

CSU
(Unit)

CSU
(Unit)

CSU
(Unit)

CSU
(Unit)

CSU
(Unit)

CSU
(Unit)

CSU
(Unit)

PRODUCT

CSCI
(Program)

CSCI

CSCI

Figure 2-4: Computer software architecture

18

2.3.1.2 Schedule
The development schedule contains many more tasks than the preliminary
timeline presented in the contract Statement of Work (SOW). The SOW
enables the project manager to monitor and control progress as the
development proceeds. The software developer and the project manager,
and often the government customer, develop and agree upon the SDP. The
schedule is one of the most critical elements of the SDP and one of the most
common factors in project failure. A good estimate is a requirement for
project success.

The project plan schedule needs to contain items directly connected to
software quality besides the overall project tasks and milestones, such as
design tasks, status meetings, functional specification reviews, design
reviews, and coding reviews.

2.3.1.3 Software Design Document
The Software Design Document (SDD) describes the complete design of a
CSCI. It describes the CSCI as composed of CSCs and Computer Software
Units (CSUs).

The SDD describes the allocation of requirements from a CSCI to its CSCs
and CSUs. Prior to the PDR, the SDD is entered into the Developmental
Configuration for the CSCI. Upon completion of the Physical Configuration
Audit (PCA), the SDD, as part of the SPS, is entered into the Product
Baseline for the CSCI.

The SDD is used by the developer for three primary purposes, namely:

• Present the preliminary design at the Preliminary Design Review(s).

• Present the detailed design at the Critical Design Review(s).

• Use the design information as the basis for coding each CSU.

The SDD is used by the government to assess the preliminary and detailed
design of a CSCI.

2.3.1.4 Quality Plan
The Quality Plan section of the SDP contains an overview of the Quality
Assurance and Test Plan, which verifies that the product performs in
accordance with the requirements specification and meets all pertinent
customer requirements.

The Test Plan is a part of the Quality Plan section of the Software
Development Project Plan. It describes the:

• Overall test policy and objectives.
• Responsibility for test case generation.
• Scope of the testing activity: operating systems, computers,

features, functions.
• Rules for software acceptance.

A schedule with milestones and the names of people and resources
committed to achieving them should be part of this plan.

19

2.3.2 Software Requirements Specification
The SRS is produced at the conclusion of the requirements analysis task.
The SRS is the key document that defines the product to be produced during
the full-scale development following the SRR. Software functions and
performance are allocated to the CSCI as part of the systems engineering
activity. The SRS contains a refinement of the requirements allocation
which includes a complete information description, a detailed functional
description, a representation of system behavior, performance requirements
and design constraints, and software validation criteria.

2.3.3 Interface Control Document
The SRS is accompanied by an interface description in the form of an ICD or
an Interface Requirements Specification. The interface description defines,
in detail, the interface between the CSCI and the higher-layer system
hardware and software.

20

Section 3
Levels of Detail in Software

Estimates
Software estimates generally fall into one of two distinct categories: system-
level and component-level. A system-level estimate is the best approach
when few or none of the requirements are allocated to CSCIs. On the other
hand, the component-level estimate is used to perform detailed estimates of
software components at the CSCI level.

A major factor in determining the estimate type is the program acquisition
state or phase. Early in the program, generally before or at Milestone A, a
system-level estimate should be employed. Currently, there is a general lack
of detailed understanding of the requirements, the system has not yet been
decomposed into CSCIs, and only a “ballpark” estimate is required.
Programs after Milestone B generally use component estimates. Most
programs transition from a system estimate to a component estimate as the
architecture and the development environment become more fully defined.

A system-level estimate is normally conducted at a time in the system
development process before the software subsystem has been decomposed
into CSCIs. At that time, the software size is only loosely defined and the
software developer may be unknown. This estimate type is generally used
for rough planning and resource allocation purposes. System-level estimates
produce development effort estimates only and should not be used to predict
a schedule.

The component-level estimate is a detailed or CSCI-level estimate. There
are two criteria that must be satisfied in order for a component-level estimate
to be valid: The testable project requirements must be defined and allocated
to one or more CSCIs (as described previously in Figure 2-1), and the CSCI
interfaces must be defined.

The software estimating tools available in the marketplace are designed for
component-level estimates and should not be used at the system level. Cost
estimates obtained for software elements (defined only at the system level
using these tools) will be too high, and the schedule estimates for the system-
level elements will be too long.

An accurate (or realistic) component estimate requires knowledge of four
controlling factors:

• Effective size (Section 6).
• Basic developer capability (Section 8).
• Environment constraints imposed by the development requirements

(Section 9).
• Product characteristics, including complexity (Section 10).

3.1 Estimate foundation factors
Software development cost is largely determined by three factors:

• How big is the development?

• How efficient is the developer?

Damn your estimate! Give me two
years and a dozen good engineers,
and I’ll deliver your system.

Hank Beers, experienced software
manager, 1985

21

• What are the development constraints?

Size is the measure in lines of code, function points, object points, or some
other units, of how large the development effort will be. Cost and schedule
are directly related to the size of the product.

Efficiency is a characteristic of the developer. Developer skill and
experience lead to higher productivity, lower costs, and shorter schedules.

Every project has constraints. The development environment provides
limitations in terms of development system and product requirements.
Product complexity limits the size of the development team which, in turn,
controls the schedule. Constraints are largely determined by the product (or
application) type. For example, constraints applied to accounting systems
are less stringent than space system applications. The customer introduces
additional constraints related to reliability, equipment volatility, and security,
as well as memory and processing constraints.

Development productivity is determined by a combination of developer
efficiency and the constraints placed on the development.

Productivity is dealt with in the system-level and component-level models in
different ways. The estimating approaches and their differences are
described in the following sections.

3.2 System-level estimating model
The system-level (or first-order) model is the most rudimentary estimating
model class and is probably the model that will be used most often,
especially in early cost and schedule projections. This model is, simply, a
productivity constant multiplied by the software product effective size. The
result yields a development effort and cost. The productivity constant is
defined as the development organization production capability in terms of
arbitrary production units. The production units (size) can be effective
source lines of code (ESLOC), function points, object points, use cases, and
a host of other units depending on one’s experience and estimate
requirements. For the purpose of this discussion, we will use effective
source lines of code (ESLOC) as the production unit measure and person
months per ESLOC as the productivity measure. The first-order estimating
model can be summarized as:

ekd SCE = (3-1)

where dE is the development effort in person-months (PM),

 kC is a productivity factor (PM/ESLOC), and

 eS is the number of effective source lines of code (ESLOC).

The effective size can be defined in several ways which are discussed in
Sections 4 and 6 in greater detail. For the purpose of this discussion, we fall
back to an effective size definition that has been in use since the late 1970s
and produces reasonable effective size values for rough estimates. The
simple size value is given by

22

 reusednewe SSSS 2.075.0 mod ++= (3-2)

where Se is the software effective size (ESLOC),
Snew is the number of new SLOC being created for the product,
Smod is the number of pre-existing SLOC being modified for the

product development, and
Sreused is the number of pre-existing, unmodified SLOC used in the

product (requires functionality allocation and testing).

The productivity factor is commonly determined by the product type,
historic developer capability, or both, and is derived from past development
projects. This factor includes all the software related effort needed to
produce software beginning with architecture design through (and including)
final qualification testing and is divided by the effective size. Equation 3-1
is reasonably simple and is widely used to produce high-level, rough
estimates.

By collecting several data points from a specific organization developing a
specific product type, an average productivity factor can be computed. This
value is superior to the factors tabulated in this section for specific projects
by a contractor. Collecting several data points of different sizes will produce
a size-sensitive productivity relationship. Table 3-1 shows some typical
productivity values for various types of software application types.

The values contained in Table 3-1 have been developed from a wide range of
software developers and environments. The software types in the table may
not correlate exactly with the product type you are estimating, so some
subjectivity is required in selecting the appropriate type to use for your
estimate. The productivity factor given for each type is the mean of the data
collected for that software type. Also, consider that when the types were
defined there was a wide dispersion of productivity values for each size and
type. Some data is conservative, but some is quite aggressive; in other

Table 3-1: Typical productivity factors (person-months per KESLOC) by size and software type

Software Type D 10
KESLOC

20
KESLOC

50
KESLOC

100
KESLOC

250
KESLOC

Avionics 8 12.6 14.5 17.4 20.0 24.0

Business 15 2.1 2.4 2.9 3.3 4.0

Command & control 10 6.3 7.2 8.7 10.0 12.0

Embedded 8 9.0 10.4 12.4 14.3 17.2

Internet (public) 12 2.1 2.4 2.9 3.3 4.0

Internet (internal) 15 1.1 1.2 1.5 1.7 2.0

Microcode 4-8 12.6 14.5 17.4 20.0 24.0

Process control 12 4.2 4.8 5.8 6.7 8.0

Real-time 8 12.6 14.5 17.4 20.0 24.0

Scientific systems/
Engineering research 12 2.5 2.9 3.5 4.0 4.8

Shrink wrapped/
Packaged 12-15 2.1 2.4 2.9 3.3 4.0

Systems/ Drivers 10 6.3 7.2 8.7 10.0 12.0

Telecommunication 10 6.3 7.2 8.7 10.0 12.0

Source: Adapted and extended from McConnell, Software Estimation, 2006, Putnam and Meyers, Measures
for Excellence, 1992, Putnam and Meyers, Industrial Strength Software, 1997 and Putnam and Meyers, Five
Core Metrics, 2003

23

words, data is often collected in a way to increase the apparent productivity
factor. For example, some costs for development activities may have been
reallocated from development to test or to system engineering. The mean
value is taken from a skewed distribution that, in most cases, will make the
estimate somewhat optimistic. Be aware of the data!

The system complexity (D) column in Table 3-1 shows a relationship
between the application type and the typical software complexity.
Complexity is defined as the degree to which systems design or
implementation is difficult to understand and verify. System complexity
values have a typical range, in practice, between 4 and 15, with 4 being the
most complex. A comprehensive discussion of software complexity is
contained in Section 10.1. It is interesting to note the productivity rate
achieved for each software type tends to group around the associated
complexity value.

Issues arise when the effective project size is less than approximately 20
KESLOC. First, the data from which the tables are generated have a wide
variance; that is, the productivity values for those projects are highly
dependent on individual performance. The high variation adds risk to the
tabulated values. This is explained in more detail in Section 4.

Second, when tasks are 20 KESLOC or less, it is highly likely that the
software task will be developed as a component (CSCI). At the component
level, environment and personnel effects will be factored into the
productivity value. The component-level estimating approach is discussed in
Section 5.

The ideal CSCI size is reputed to be about 25-30 KESLOC, resulting in a
development team of approximately 15 people, in a normal environment.
This is because the ability of the development personnel to communicate and
work together is important in small projects.

The 100 KESLOC productivity rate listed in Table 3-1 is close to the rate
expected for medium-size projects but the size is on the high side for a
single-CSCI project.

Columns 3 and 4 of the table are highlighted to emphasize the increased
productivity normally present in small development teams. The data in
Table 3-1 for project sizes of 50 KESLOC or greater is more stable. It is
recommended that values below the 50 KESLOC column of the productivity
factor table be used with care because of the large variance in the underlying
data.

It stands to reason that military software development programs result in
lower productivities. The high levels of reliability and security inherent in
military applications necessitate more careful analysis and design as well as
more exhaustive testing than the average commercial or web application.

There are no useful methods to project a development schedule at the system
level unless the system can be developed as a single CSCI.

3.3 Component-level estimating model
The component-level estimate requires an allocation of the system
requirements into CSCIs. The CSCIs can be further allocated into subunits
to achieve proper sizing for development. Some components may be reused
from other previously developed subunits or include the use of a COTS
product.

24

The component-level estimate should not be used for software development
task estimates with “pieces” larger than 200 KESLOC. This is due to the
impracticality of a development team working together effectively, given the
team size necessary to implement a CSCI of this magnitude.

The 250 KESLOC project is beyond the upper limit for
a single CSCI project. The Aerospace Corporation
report on DoD software project development12

The component-level estimate addresses some of the
weakness of the system-level estimate. The first
system-level weakness is its inability to adjust the
productivity factor to account for variations between
projects and differences in development environments.
For example, contractor A may have a more efficient
process than contractor B; however, contractor A may be using a
development team with less experience than assumed in the historic
productivity factor. Different constraints may be present in the current
development than were present in previous projects. In addition, using a
fixed (or calibrated) productivity factor limits the model’s application across
a wide variety of environments.

 shows
that no CSCIs larger than 200 KESLOC in their
database have ever been successfully completed, as
illustrated in Figure 3-1. The team for a project of this
size approaches 100 people working and
communicating as a team. As a project, the 250
KESLOC total size needs to be decomposed into a
group of CSCIs that can be independently managed and
developed.

A second major weakness is the inability to accurately plan a development
schedule for the project. The component-level estimate, unlike the system-
level estimate, can focus on the development team and environment to
produce a schedule estimate and staffing profile, as well as a development
effort estimate.

The component-level estimating model compensates for the system model’s
narrow applicability by incorporating a set of environment factors to adjust
the productivity factor to account for a wider range of variables such as team
capability and experience, requirements volatility, and product constraints.
The form of the component-level estimating model is

12 Long, L., K. Bell, J. Gayek, and R. Larson. “Software Cost and Productivity
Model.” Aerospace Report No. ATR-2004(8311)-1. Aerospace Corporation. El
Segundo, CA: 20 Feb 2004.

Figure 3-1: Achievable software development effective size and

schedule

25

 β
e

n

i
ikd SfCE

= ∏

=1
 (3-3)

where Ed is the full-scale development effort (SRR through FQT),

if is the ith environment factor,
n is the number of environment factors, and
β is an “entropy13

The number of environment factors varies across estimating models, and is
typically between 15 (COCOMO) and 32 (Jensen). Models using lower
numbers of factors ignore management impacts and take a higher-level view
of other environment factor impacts on productivity.

” factor that measures the communication
efficiency of the development team.

Environment factors can be grouped into four distinct types: personnel,
management, environment, and product. A table of common environment
factors is shown in Appendix I-11.

The component model compensates for the productivity decrease in larger
projects by incorporating an entropy factor (β) to account for the change.
The entropy effect demonstrates the impact of the large number of
communications paths that are present in large development teams. The
development team theoretically has () 2/1−nn communication paths, where
n is the number of development personnel. An entropy factor value of 1.0
represents no productivity change with size. An entropy value of less than
1.0 shows a productivity increase with size, and a value greater than 1.0
represents a productivity decrease with size. Entropy values of less than 1.0
are inconsistent with historical software data14

 If the system can be built as a single CSCI, the schedule can be
approximated by an equation of the form

. Most of the widely used
models in the 1980s (COCOMO embedded mode, PRICE®-S, Revised
Intermediate COCOMO, Seer and SLIM®) used entropy values of
approximately 1.2 for DoD projects. The 1.2 value applies to development
tasks using more than five development personnel. A lone programmer task
has a corresponding entropy factor of 1.0 since there is no communication
issue.

13 Entropy is defined as “An index of the degree in which the total energy of a
thermodynamic system is uniformly distributed and is thus unavailable for
conversion into work.” Entropy in software development equates to the energy
expended in the process which does not contribute to the software product. For
example, reverse engineering of the existing software product is necessary, but
produces no product. Communication faults create errors, rework, and consumes
resources, but does not contribute to the product.
14 This is a good place to point out a major difference between software and almost
any other manufactured product. In other estimating disciplines, a large number of
product replications improve productivity through an ability to spread costs over a
large sample and reduce learning curve effects. The software product is but a single
production item which becomes more complex to manage and develop as effective
size increases.

26

3* dd EXT = months (3-4)

where Td is the development time (months),

X is a constant between 2.9 and 3.6, depending on the software
complexity, and

Ed is the development effort (PM).

3.4 Estimating process
To summarize the software estimating approaches, there are two
fundamental estimating processes for software development: system level,
and component level. Common to both processes are the effective size and
complexity of the system under development

The system process is generally used in the early phases of development
when details, such as an architectural design, are not available. The system
may be only a concept at this stage or may have functional requirements, but
in any case, the system does not have the components defined at this point.
The information available probably includes a size estimate and an
application type. From the application type we can derive an approximate
value for the system complexity. The estimate developed under these
conditions is only a coarse approximation. Adding significant digits to the
results does not improve accuracy or reality.

Figure 3-2 shows the relationship between system-level and component-level
estimates. The system-level estimating process, based on size and
productivity information, is described in Section 4.

The component-level process is generally used after the software
components are defined with an SRS to describe the component functionality
and an ICD to define the component interface to the larger system. These
documents describe the scope of the components and make it possible to
estimate the effort, schedule and staffing characteristics of the actual
development. At this point, the developer (or a generic developer), with the
capabilities to construct the software component has been defined. The
details of the component-level estimating process are described in Section 5.

Figure 3-2: Software elements and their relationship to the estimate types

Application
Type

Effective
Size Complexity Developer

Capability
Development
Environment

Product
Characteristics

System
Level

Estimate

Component
Level

Estimate

The validity of an input
data value is inversely
proportional to the number
of trailing zeros in its
representation.

27

Section 4
System-Level Estimating Process

The system-level estimating process is generally used in the early phases of
development, where details such as an architectural design are not available.
The system may only be a concept or may have functional requirements, but
in any case, does not have the components defined. The information
available probably includes a size estimate and an application type, as shown
in Table 4-1. From the application type, we can derive an approximate value
for the system complexity. The estimate developed under these conditions is
only a coarse approximation. Adding significant digits to the results does
not improve accuracy or reflect reality. Also, note that the number of
trailing zeros is a likely indication of the uncertainty of the number.

The system-level estimating model is defined as:

ekd SCE = (4-1)

where dE is the development effort in Person-Months (PM),

kC is a productivity factor that depends upon the product type and
the development environment (PM/ESLOC), and

 eS is the number of ESLOC (size).

The development effort can be in Person-Hours, PH, or any other unit
corresponding to a measure of productivity.

If – and only if – the system can be built as a single CSCI, the schedule can
be approximated by an equation of the form:

3* dd EXT = months (4-2)

where Td is the development time (months),

X is a constant between 2.9 and 3.6 depending upon the software
complexity, and

Ed is the development effort (PM).

For example, if a software subsystem is projected to be 300,000 ESLOC and
the associated productivity factor is 100 ESLOC per person month, the
development effort estimate will be 3,000 PM. The corresponding
development time, calculated using most software estimating tools, is
approximately 50 months and 60 developers, or

60 developers = 3,000 PM / 50 MO.

If the subsystem is developed as five equal CSCIs, the development time is
approximately 29 months plus some subsystem integration time. In any case,
the estimated development times for the two options diverge greatly and
demonstrate the weakness of the development schedule estimate at the
system level. Even without using estimating tools, it is logical that the
required schedule for the two options will be widely disparate.

Equation (4-1) states that two important pieces of information – productivity
and size – are necessary to conduct a software cost analysis at the system

Table 4-1: System Concept Information

Application Type Baseline Size

System Manager 219,000

Control Data Links 320,000

Sensors 157,000
Operating System
(Application Program
Interfaces)

53,000

System Total 749,000

We learn from experience that we don’t
learn from experience.

D.H. Lawrence

A CSCI with an effective size
greater than 200,000 source
lines will never be completed
successfully. Also, if the
required development
schedule exceeds five years,
the CSCI will never be
delivered.

Results of Aerospace Corp
data analysis

28

level. There is a straightforward procedure performing a complete system-
level cost analysis. Briefly, the steps are:

1. Construct a list of the software elements contained in the system. These
elements can be major subsystems, CSCIs, or both, depending upon the
descriptive information available. Most often, a system-level estimate is
performed prior to, or slightly after, Milestone A.

2. Determine the complexity of each system software elements (Section
4.1). As an alternative approach, use the productivity factor table (Table
4-4 in Section 4.4) which contains typical complexity values for each of
the 13 application categories.

3. Determine the effective size for each element in the system software list.
The element size information may be available in many forms including
ESLOC, function points, use cases, object points, or other measures.
The important point is that the form must ultimately be reducible to
ESLOC to be usable by most estimating tools.

a. Determine the baseline size estimate for each element (Section
4.2.1 for source code estimates, Section 4.2.2 for function
points).

b. Calculate the projected size growth for each element taking
into account the maturity of the project and the element
complexity (Section 4.3).

4. Choose a productivity factor for each software element (Section 4.4).

5. Calculate the development cost for each element (Section 4.5).

6. Validate the development cost estimate (Section 4.6).

7. Allocate the development costs to the project phases (Section 4.7).

The system-level cost estimating process described in this section is
supported by a case study that demonstrates development of an estimate
from inception through completion. This example is contained in Appendix
F.

4.1 Product complexity
A list of the system’s software elements may be available from the ICD or
other design and architecture documents prior to Milestone A. These
documents may also contain other important estimating information such as
planned size and complexity of the software elements.

Complexity (apparent) is defined as the degree to which a system or
component has a design or implementation that is difficult to understand and
verify15

15 Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY:
1990.

. The complexity number may be viewed as analogous to the amount
of code the person can understand or maintain, thus the lower a number the
more intricate or complex. In more visible terms, complexity, or “D” (for
difficulty), is a function of the internal logic, the number and intricacy of the
interfaces, and the understandability of the architecture and code. The first
thing to understand about complexity is that it has nothing to do with
software size.

29

Larry Putnam16

Stratification of the complexity data occurs around the
system types. Table 4-2 is a useful rough guide for
determining the appropriate D value for specific software
types. The majority of estimating tools refer to D as
complexity.

 empirically noted that when his software
database was plotted as K (total lifecycle effort in person
years) vs. T3 (development time in years), the data stratified
according to the complexity of the software system.

4.2 Size estimating process
Size is the most important effort (cost) and schedule driver
in the software development estimate. Size information
early in a project is seldom, if ever, accurate. Information
presented in a Cost Analysis Requirements Description
(CARD) is generally predicted during the concept
development phase, prior to the start of full-scale development. Size
information is often presented as a single value leading to a point cost and
schedule estimate; however, the estimate is more accurately expressed as a
minimum (most optimistic) value, a most likely value, and a maximum
(most pessimistic) value to give a more realistic picture of the information.

The size values used in a software cost and schedule estimate are derived
from a three-step process:

1. Determine the baseline effective size value and the baseline size
standard deviation. If the system contains function points as part of the
size specification, the function points must be converted into equivalent
ESLOC as part of this step.

2. Determine the maximum effective size growth. The maximum growth
value is determined from the developer capability, the maturity of the
software product, the product complexity, and the anticipated reuse level
of pre-existing source code.

3. Determine the mean growth estimate. This is used as the most likely
size value in most cost and schedule estimates.

4.2.1 Effective source lines of code (ESLOC)
A SLOC is a measure of software size. A simple, concise definition of a
source line of code is: any software statement that must be designed,
documented, and tested. The three criteria designed, documented, and
tested, must be satisfied in each counted SLOC.

ESLOC, as a measure of work, is a useful and necessary concept for defining
“effective size” for effort (cost) calculations. Development ESLOC are
numerically identical to physical source lines when the total software
product is being developed from scratch or as new source lines.
Unfortunately, most software developments incorporate a combination of
new source code, existing code modified to meet new requirements, and
unmodified code or reusable software components. A detailed description of
the concept of work and effective size is contained in Section 6.

16 Putnam, L.H. “A General Empirical Solution to the Macro Software Sizing and
Estimating Problem.” IEEE Transactions on Software Engineering. New York, NY:
1978.

Table 4-2: Stratification of complexity data

D Description

4 Development primarily using microcode. Signal processing
systems with extremely complex interfaces and control logic.

8
New systems with significant interface and interaction
requirements with larger system structure. Operating systems
and real-time processing with significant logical code.

12 Application with significant logical complexity. Some changes
in the operating system, but little or no real-time processing.

15
New standalone systems developed on firm operating systems.
Minimal interface with underlying operating system or other
system parts.

21 Software with low logical complexity using straightforward I/O
and primarily internal data storage.

28 Extremely simple software containing primarily straight-line
code using only internal arrays for data storage.

30

4.2.2 Function point counting
Function point analysis is a method for predicting the total size (and ONLY
the total size – not the development effort or time) of a software system.
Function points measure software size by quantifying the system
functionality provided to the estimator and is based primarily on the system
logical design. It is difficult to use function points as a measure of size in
modified systems except for new and isolatable functionality. (Functionality
cannot be changed without modifying source code, but source code can be
modified without affecting functionality (the “zero function point”
problem.).

The overall objective of the function point sizing process is to determine an
adjusted function point (AFP) count that represents the functional size of the
software system. There are several steps necessary to accomplish this task.
They are:

1. Determine the application boundary.
2. Identify and rate transactional function types to determine their

contribution to the unadjusted function point (UFP) count.
3. Identify and rate data function types to determine their contribution to

the unadjusted function point count.
4. Determine the value adjustment factor (VAF) from the 14 General

System Characteristics (GSCs).
5. Multiply the UFP count by VAF to obtain the adjusted function point

count (AFP).

The function point counting process is explained in more detail and
demonstrated in Section 6.7.

4.3 Software size growth
Some experts consider software code growth (Figure 4-1) to be the single
most important factor in development cost and schedule overruns. Code
growth is caused by a number of factors: requirements
volatility, size projection errors, product functionality changes,
and human errors.

The maximum size growth factor is shown in Table 4-3. The
growth factor is determined by the complexity of the software
product and from the maturity of the product at the point the
estimate is being made. The maturity, or M, value is measured
on a 100-point scale where the concept-level maturity is zero
and the end of development maturity (or Formal Qualification
Test [FQT]) is 100 points.

The maturity factor for each milestone is shown in the table.
The factors project the maximum product size at the end of
development. The highlighted row in Table 4-3 corresponds to
the relative project maturity (M) of 52 at the start of Software
Requirements Review (SRR).

Figure 4-1: Effective size growth distribution

Size Growth

P
ro

ba
bi

lit
y

Most likely

Mean

Max

Baseline

Size Growth

P
ro

ba
bi

lit
y

Most likely

Mean

Max

Baseline

31

Table 4-4 shows the mean projected size growth as a function of project
maturity and product complexity that corresponds to the maximum growth
illustrated in Figure 4-1.

Size growth data for complexity values less than eight is too limited to be of
any value; hence, the information in Tables 4-3 and 4-4 present growth
information for complexities in the range of eight to 15. For components of
higher complexity (D = 4), assume the growth value for D = 8.

The cost and schedule projections are normally computed from the mean
size growth value. This is the value that applies most for a realistic estimate.
The probability of the baseline size existing at the end of development is
very small and the corresponding delivery schedule and development effort
are unlikely (see Section 6.5 regarding size growth).

4.4 Productivity factor
There are two methods described in this guidebook to determine the
productivity factor for software development. Both yield reasonable –albeit
different – values. Remember, the results produced here are estimates.
Without historic data that describes the characteristics of the product, the
software development environment, and the developer capability, it is
unlikely the productivity factors, here or anywhere else, are going to produce
identical effort and schedule estimates. At the system level, the product
characteristics are likely to be known, but the developer is not typically
identified at the time the system estimate is made.

Table 4-3: Maximum software growth projections as a function of
project maturity and product complexity.

 Complexity

Maturity M < 8 9 10 11 12 13 14 15
Concept 0 2.70 2.53 2.36 2.19 2.01 1.84 1.67 1.50

Source 15 2.47 2.32 2.17 2.03 1.88 1.73 1.59 1.44

C/A 33 2.19 2.07 1.95 1.84 1.72 1.60 1.49 1.37

SRR 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29

PDR 67 1.66 1.60 1.54 1.48 1.42 1.35 1.29 1.23

CDR 84 1.40 1.36 1.33 1.30 1.26 1.23 1.20 1.16

FQT 100 1.15 1.14 1.14 1.13 1.12 1.11 1.11 1.10

Table 4-4: Mean software growth projections as a function of
project maturity and product complexity.

 Complexity

Maturity M < 8 9 10 11 12 13 14 15
Concept 0 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15

Source 15 1.43 1.39 1.34 1.30 1.26 1.22 1.17 1.13

C/A 33 1.35 1.31 1.28 1.24 1.21 1.18 1.14 1.11

SRR 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09

PDR 67 1.19 1.18 1.16 1.14 1.12 1.10 1.09 1.07

CDR 84 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05

FQT 100 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03

32

4.4.1 Productivity factor table
A table of system types, shown in Table 4-5, is divided into 13 categories to
provide meaningful productivity factors for these types of systems.
Additional system types can be covered by selecting the given type using the
closest approximation. Table 4-5 assumes an average development
organization operating in a normal environment. Subjective adjustments can
be made to the factors to compensate for application experience. The
complexity value D represents the value that is typical for that software type.
Complexity is discussed in detail in Section 10.1.

The utility of the system model can be effective early in the development
process before the software system architecture is established and the
software components are defined. The model is also valuable where there is
little or no knowledge of the developer or the developer’s environment
available. A reasonable “ballpark” estimate can be created quickly to
support rough planning.

4.4.2 ESC metrics
The Air Force Electronic Systems Center (ESC) compiled a database17

17 AFMC Electronic Systems Center. Cost Analysis: Software Factors and Estimating
Relationships. ESCP 173-2B. Hanscom AFB, MA: 1994.

 of
military projects developed during the years 1970-1993. The ESC
categorization follows the reliability definitions posed by Boehm in Software

Table 4-5: Typical productivity factors (ESLOC per person month) by size and software type

Software Type D 10
KESLOC

20
KESLOC

50
KESLOC

100
KESLOC

250
KESLOC

Avionics 8 79 69 57 50 42

Business 15 475 414 345 300 250

Command & control 10 158 138 115 100 83

Embedded 8 111 97 80 70 58

Internet (public) 12 475 414 345 300 250

Internet (internal) 15 951 828 689 600 500

Microcode 4-8 79 69 57 50 42

Process control 12 238 207 172 150 125

Real-time 8 79 69 57 50 42

Scientific systems/
Engineering research 12 396 345 287 250 208

Shrink wrapped/
Packaged

12-
15

475 414 345 300 250

Systems/ Drivers 10 158 138 115 100 83

Telecommunication 10 158 138 115 100 83

Source: Adapted and extended from McConnell, Software Estimation, 2006, Putnam and Meyers, Measures for
Excellence, 1992, Putnam and Meyers, Industrial Strength Software, 1997 and Putnam and Meyers, Five Core
Metrics, 2003.

33

Engineering Economics; that is, grouping reliability according to the
following categories18

 shown in Table 4-6.

Each project contains CSCIs with different ratings. Each CSCI within a
project is required to interface with one or more additional CSCIs as part of a
composite system. The interaction includes both internal interfaces as well
as interfaces to external systems. The number of integrating CSCIs is
defined as the total number of CSCIs in the project. ESC formed three
categories for their productivity analysis based on the number of integrating
CSCIs and the required reliability level, as shown in Table 4-7.

4.5 System-level cost estimating
The category drawn from Table 4-7 specifies the productivity factor in Table
4-8 to be used for the system level estimate. An interesting note to the ESC
productivity analysis shown in Table 4-8 is the narrow range of the
productivity data. Standard deviations for the three categories even without
considering the project size and development environment are very low for
the 93 projects contained in the database. Note that there is no standard for
defining productivity. The standard in the guidebook is ESLOC/PM.
However, ESC uses PM/KSLOC, so it is proper to use their definition in
their example.

18 Boehm. B.W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, 1981.

Table 4-7: Definition of complexity/reliability categories

 Integrating CSCIs

Reliability 0-6 CSCIs 7-10 CSCIs > 10 CSCIs

Very low - Nominal
(Moderate loss)

Category 1 Category 1 No Data

High
(Major Financial Loss)

Category 2 Category 2 Category 3

Very high
(Public safety required)

Category 2 Category 3 Category 3

Table 4-6: ESC reliability categories

Category Definition

Very low The effect of a software failure is the inconvenience incumbent on
the developers to fix the fault.

Low The effect of a software failure is a low level, easily-recoverable
loss to users.

Nominal Software failure causes a moderate loss to users, but a situation
recoverable without extreme penalty.

High The effect of a software failure can be a major financial loss or a
massive human inconvenience.

Very high The effect of a software failure can be the loss of human life.

34

System-level cost estimates, using either the productivity table approach
extended from the McConnell-Putnam category definitions or from the ESC
model, can quickly produce credible “ballpark” estimates. Note that quickly
does not equate to simply.

The ESC model is derived from a collection of military projects. The
productivity table model is derived from a large set of projects containing
both military and commercial developments. The ESC model is also size-
independent. Most of the projects investigated by ESC are large and not
categorized by size. Reliability is not considered in the productivity table
model except where common to each of the 13 system categories.

An estimate using the baseline effective software size is the most optimistic
cost estimate since it assumes there will be no software growth during full-
scale development of the product. The baseline estimate value is useful only
if the lowest possible cost is of interest. An estimate using the mean
potential growth value is usually considered the most likely cost estimate.
The maximum effective size growth value is the estimate that has the most
meaning in a cost and/or schedule risk analysis. The ESC model does not
reflect the productivity decrease that occurs as the effective size increases
with growth.

4.6 Reality check
All estimates should be validated. Most of the historic data we look at is
based on the cost and schedule for the development of CSCIs. The
productivity table information in Table 4-5 is a good source of historical
validation data for a wide range of systems. Judgment was used in defining
the 13 product types and sorting the product development information into
those types.

A second part of any reasonable estimate is the consideration of risk.
Software risk often presents itself as an increase in effective size. Large
subsystems can be decomposed into smaller CSCIs which will, in turn,
decrease the required schedule by developing smaller components. The
smaller components will achieve higher productivity which will reduce
development cost.

4.7 Allocate development effort
The distribution of effort varies with the effective size of the system. The
larger the system, the more effort will be spent in system test and integration.
The relative effort spent in creating the architecture increases with size as
well. The rough effort distribution as a function of source size is presented
in Table 4-9.

Table 4-8: Productivities for military applications by category

Project Type Productivity
(SLOC/PM)

Productivity
Factor

(PM/KSLOC)

Productivity
Range

(SLOC/PM)

Standard
Deviation

(SLOC/PM)

All Programs 131.7 7.60 n/a n/a

Category 1 195.7 5.10 116.9 – 260.8 49

Category 2 123.8 8.08 88 – 165.6 23.6

Category 3 69.1 14.47 40.6 – 95.2 16.5

35

Each row of the table adds up to a percentage greater than 100% since the
requirements effort and system test effort are not included in the full scale
development effort resulting from Equation (4-1). Full scale development
includes the high level design (architecture), the development (detail design,
code and unit test), internal component integration, and the technical
management supporting the development activities. The requirements
definition effort must be added on to the beginning of the development and
system integration to the end. Software maintenance is a separate
calculation.

The next step in the effort estimate is to calculate the effort to be assigned to
each of the individual development and integration activities. If system
integration is to be included in the total system development effort, the
development computed in the last step must be increased to account for this.
The total effort is computed from the relationship:

DevelopTotal EkE ×= (4-3)

where ETotal is the effort including both full-scale development and the
CSCI integration effort,

EDevelop is the full-scale development effort, and

k = 1.21 to 1.40 (an additional 21 to 40 percent effort) depending on
the anticipated system integration difficulty.

A commercial standalone software product development may entail no
system integration. However, a typical integration factor k is in the range of
1.21 to 1.40 for normal system integration requirements. An integration
factor value of 1.28 is a reasonable default for CSCI-system integration.

Note that the effort expenditures in system development are not constant
across all activities. Some of the variance is due to different schedule
periods for each activity. Most of the variance, however, is due to a
peculiarity in the way successful software development projects are staffed
from the start of development through delivery. The staffing profile that
correlates well with successful projects will be described in Section 5.1. It is
known as the Rayleigh-Norden profile (named for the men who discovered
the presence of the phenomenon) and projects staff at a linear rate at the start
that is inversely proportional to the project complexity. The complexity
aspect is not visible at the system level, but becomes an important concept at
the component level of the project.

Remember, the system-level estimating model does not allow for the
prediction, or projection, of a software development schedule. The schedule

Table 4-9: Total project effort distribution as a function of product size

Size
(KSLOC)

Activity

Rqmts.
(%)

High-Level
Design (%)

Develop
(%)

Sys. Test
(%)

Mgt.
(%)

1 4 12 77 17 11

25 4 20 67 24 13

125 7 22 63 25 15

500 8 25 56 32 19

Adapted from McConnell, 2006; Putnam and Myers, 1992; Jones, 2000; Boehm et
al, 2000; Putnam and Myers, 2003; Boehm and Turner, 2004; Stutzke, 2005

36

can only be produced when the system has been decomposed to the
component (CSCI) level and estimated using a component level estimating
technique.

4.8 Allocate maintenance effort
Life-cycle cost has multiple meanings. A common definition relates to the
software development process where the life cycle includes all development
phases from requirements analysis through system integration. A more
realistic definition includes all phases from requirements analysis to disposal
at the end of the software’s life. The latter definition includes the
maintenance of the software product, which can be many times more than
the cost of development. It is common for the cumulative cost of
maintenance to exceed the cost of full-scale development by the end of the
fifth calendar year of operations.

Software maintenance costs encompass two major categories: enhancing the
software, and retaining knowledge of the software product. Enhancements
are of two types: (1) changing the product’s functional specification (adding
new capability), and (2) improving the product without changing the
functional specification. Enhancement is the process of modifying the
software to fit the user’s needs. The activities we normally relate to
maintenance, which involve making changes to the software, all fall into the
enhancement category.

Software product improvement falls into three subcategories19

• Corrective maintenance: processing, performance, or implementation
failures

: corrective,
adaptive, and perfective.

• Adaptive maintenance: changes in the processing or data environment

• Perfective maintenance: enhancing performance or maintainability

The second maintenance category, knowledge retention, is often ignored in
the estimate. The number of people charged with the maintenance task must
be large enough to retain knowledge of the inner workings of the software
product; that is, a staff must be retained who have detailed knowledge of the
software. For large software products, the number is typically not small.

The system-level software estimating model does not have adequate
information to project the defect removal effort. There is no information
describing the development that is essential for the calculation. However,
there is adequate information to deal with the enhancement and knowledge
retention costs.

4.8.1 Software enhancement
The enhancement effort uses the concept of Annual Change Traffic (ACT),
which is the decimal fraction of the total product source code that will
undergo change or modification during a year and includes all types of
enhancements.

The enhancement effort component is given by the expression:

19 Swanson, E.B. The Dimensions of Maintenance. Proc. of the IEEE/ACM Second
International Conference on Software Engineering. Oct. 1976.

37

totalS
gPF
ACTE =1 (PM/YR) (4-4)

where E1 is the enhancement effort (PM per year)

 ACT is the annual change traffic (decimal fraction),

g is the relative quality of the maintenance organization (0.5 to 1.7),

 PF is the software development productivity factor (ESLOC/PM),
and

 totalS is the total software size (SLOC).

As a rule of thumb, based upon historical data, once the enhancement effort
is greater than 20 or 30 percent, it is more practical to consider starting a
fresh development to incorporate the changes or enhancements into the
system. Imagine that the ACT value was 1.0. That implies the system
would be completely replaced within one year of maintenance. It is not very
likely that this would happen, especially if the initial system development
took three or four years.

The productivity of the maintenance organization is determined relative to
the quality (efficiency) of the development organization. If the development
organization is maintaining the software, the value g is 1.0. Often the
maintenance organization is not as experienced or competent as the
development team. In that case, the g factor must be decreased (e.g., 0.8).

4.8.2 Knowledge retention
Operational knowledge of the software is essential to maintaining the
product over its lifetime (i.e., changing and/or enhancing the software
product). The knowledge retention effort is often ignored in forecasting the
effort required to keep the product functioning. Ignoring the operation
knowledge retention effort leads to either severe cost overruns or poor
product knowledge during the maintenance activity.

The number of personnel required to retain operational knowledge of the
software product can be projected by utilizing a concept that persists from
early software folklore. An old heuristic “Each programmer can maintain
four boxes of cards” (where a card box contained 2,000 computer punch
cards) is almost as old as software itself. An updated version of the heuristic
that is very applicable today is:

 totalS
gD

E 2.9
2 = PM per year (4-5)

where E2 is the enhancement effort (PM per year),

 D is the effective software product complexity,

g is the relative quality of the maintenance organization (0.5 to 1.5)
with 1.5 matched with exceptional organizations, and

 totalS is the total software size (KSLOC).

38

4.8.3 Steady state maintenance effort
The steady-state maintenance effort per year is given by:

),max(21 EEEm = (PM/YR) (4-6)

where mE is the steady-state software product maintenance effort.

Equation (4-6) shows that the personnel performing enhancement of the
software product are also those holding the operational knowledge of the
product. Only in the case where the enhancement requirements exceed the
number of personnel necessary to retain operational knowledge of the
product are additional personnel added to the maintenance task. Often, the
operational knowledge requirements are much larger than the enhancement
requirements. Then, maintenance effort can be computed from Equation (4-
5) alone.

39

Section 5
Component-Level Estimating

Process
The component-level estimating process is generally used after details such
as an architectural design for the system are available. Programs after
Milestone B generally support component level estimates. The system
definition will have functional component requirements defined, namely
Software Requirements Specifications (SRSs) and the interfaces between
components defined by Interface Control Documents (ICDs) or Interface
Requirements Specifications. A component is a single CSCI. The
information available also includes a size estimate and an application type
as shown in Table 5-1. The example component sizes and functionality
were derived from an actual system with the names changed.

The developer may also be known at this time, or at least the developer
class will be known well enough that the typical characteristics can be
defined.

The component-level estimate model compensates for the system model’s
narrow applicability by incorporating a description of the developer
capability, a set of environment factors that adjust the productivity factor
to fit a wider range of problems, and a set of product characteristics. The
development effort is equal to the product of a proportionality constant, a
set of adjustment factors that account for the productivity impacts of the
development environment and the product constraints, as well as the
effective size adjusted for communication issues. The generalized
mathematical form of this model is:

 β
e

n

i
ikd SfCE

= ∏

=1
 (5-1)

where
kC = proportionality constant

if = the ith environment factor,
n = the number of environment factors,
Se = effective software size, and
β = an entropy factor that measures the communication efficiency in

the development team.

The environment factors can be grouped into four distinct categories:
personnel, management, environment, and product. Table I-11 shows the
common environment factors.

The component model compensates for the productivity decrease in large
projects by incorporating an “entropy” factor to account for the productivity
change with effective size. The entropy factor accounts for the impact of the
large number of communications paths that are present in large development
teams. The development team theoretically has 2/)1(−nn communication
paths where n is the number of development personnel. The entropy factor
is similar to the productivity variation with effective size shown in Table 4-
5.

The devil is in the details.
 Anonymous

Caution: The component-
level tools should not be
applied to system-level
estimates. The underlying
architecture of the model is
not compatible with the
assumption at the heart of
system-level estimates.

Task Name
Size, Eff.
Baseline
(ESLOC)

Control Data Links 236,000

Satellite 152,000

Transmitter 96,000

Receiver 56,000

Radio 84,000

Brain 184,000

Sensors 157,000

OS (APIs) 53,000

System Total 630,000

Table 5-1: CSCI Size Estimates

40

While the component estimating model requires considerably more
information from the estimator than is required by the system-level model,
the extra effort is compensated for by the additional capabilities of the tools
that implement the various forms of the component model. Manual
calculation using the component model is more tedious, but offers greater
accuracy and reward for the effort. For example, the system-level approach
in Section 4 cannot project a development schedule. Most component-level
models do provide that capability.

The number of environment parameters varies from 15 to 32, depending
upon the particular implementation of the model as described in Equation (5-
1). The 1981 implementation of COCOMO I described by Boehm20 uses
only 16 parameters. COCOMO II21 requires 23 parameters.
Implementations of the Jensen model,22

Most of the tedium involved in component model use can be bypassed by
using a set of default environment parameter values. However, the accuracy
of the component model is decreased significantly if the default value set is
used because of assumptions made in the default environment. Many
estimating tools offer parameter sets or templates that describe many
environment and product-type options. It is important to understand how the
parameter set options are combined for a specific estimate.

 including Sage and SEER-SEMTM,
require 32 parameters.

In the component-level model, a development schedule for each component
can be approximated by an equation of the form:

3* dd EXT = months (5-2)

where Td = development time (months),

X = an empirically derived constant between 2.9 and 3.6 depending
on software product complexity, and

 Ed = development effort (PM).

Equation (5-2) gives the optimum staffing profile’s minimum schedule. At
this point, we will describe a straightforward procedure for a system-level
cost analysis. The steps are, briefly:

1. Construct a list of the software elements (CSCIs) contained in the
software system. These elements must be CSCIs, which limits the
initiation of a component-level estimate until after the CSCIs are
defined. This condition is generally satisfied after Milestone B.

2. Determine the complexity of each CSCI element (Section 5.2). Note:
Some component-level model implementations consider complexity to
be a product descriptor in the environment.

3. Determine the effective size of each element in the system software list.
The element size information may be available in many forms including

20 Boehm, B.W. Software Engineering Economics. Prentice-Hall. Englewood Cliffs,
NJ: 1981.
21 Boehm, B.W., A. Egyed, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R.
Selby. “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0.”
Annals of Software Engineering. 1995: 295-321.
22 Jensen, R.W. A Macrolevel Software Development Cost Estimation Methodology.
Proc. of the Fourteenth Asilomar Conference on Circuits, Systems, and Computers.
Pacific Grove, CA., Nov.17-19, 1980.

In most estimating tools, the
input software size form is
converted to SLOC internally
before computing the
development cost and schedule.

41

source lines of code, function points, use cases, object points, or other
measures.

a. Determine the baseline size estimate for each element (Section
5.3.1, and 6.4 for source code estimates, Sections 5.3.2 and 6.7
for function points).

b. Calculate the projected size growth for each element depending
upon the maturity of the project and the element complexity
(Section 6.5).

4. Determine the impact of the development environment (effective
technology constant) from the set of environment factors. The effective
technology constant serves as the productivity factor for each CSCI
(Sections 8 through 10).

5. Calculate the development effort for each CSCI in the system (Section
5.6).

6. Calculate the development schedule for each CSCI in the system.

7. Allocate the development effort and schedule to the project phases.
(Section 5.8).

8. Validate the development effort and schedule estimates (Section 5.7).
Compare the productivity obtained for the estimates with the historical
development productivity for similar products. The productivity results
should be similar.

Process steps 3 through 7 are generally calculated, or supported, in the
commercial software estimating tools.

The component-level software cost and schedule estimating process
described in this section is supported by a component-level case study in
Appendix G that demonstrates the development of an estimate
from inception through completion. Evolving fragments of the
estimate are updated as each step or portion of a step is
completed.

5.1 Staffing profiles
The Peter Norden study23

Norden also noted that the rate at which the project could
effectively absorb staff was proportional to the complexity of the problem to
be solved. This rate is noted in the figure as the “learning curve.” History
validates the heuristic that the more complex the problem, the slower the rate
that staff can be added to (or absorbed by) the project. Combining the two
curves produced the curve shown in the figure as a dashed line (often
referred to as the Rayleigh-Norden Curve). The dashed line represents the
optimum staffing profile in a software development project.

 at IBM showed the maximum
staffing rates for successful research and development projects
did not exceed the maximum staffing rate defined for the
associated project type. Norden asserted that an engineering
development can be viewed as a set of unsolved problems.
Over time, the number of problems remaining to be solved,
P(0), decreased exponentially to zero (as shown in Figure 5-1).

23 Norden, P. “Useful Tools for Project Management.” Management of Production.
Penguin Books. New York, NY: 1970.

Figure 5-1: Rayleigh-Norden project staffing profile

Size growth is calculated
automatically in the Sage
model.

In probability theory and statistics,
the Rayleigh distribution is a
continuous probability distribution.
It can arise when a two-dimensional
vector (e.g. wind velocity) has
elements that are normally
distributed, are uncorrelated, and
have equal variance. The vector’s
magnitude (e.g. wind speed) will
then have a Rayleigh distribution.

42

In an ideal software development, the peak of the staffing curve occurs at the
time of the Formal Qualification Test (FQT), or the end of full-scale
software development. Optimum staffing increases during the entire
development process to minimize the development schedule. The decaying
portion of the staffing curve occurs during system integration and operations.

The Rayleigh-Norden staffing profile is described by the relationship

)2/exp()/()(222
dd ttttKtf = (5-3)

where)3945.0/(dEK = ,

 Ed = full scale development effort (person-years),
 t = elapsed development time (years), and
 td = full scale development time (years).

The value of 2/ dtK defines the maximum staffing rate in
persons per year. Exceeding the maximum staffing rate
correlates strongly with project failure.

The effects of over- and under-staffing are illustrated in Figure
5-2. Front-loading the staffing profile – in an attempt to
decrease development schedule – adds people to the project at
a rate that exceeds the rate the project can absorb them. The
result is wasted effort that is not only unavailable to the
project, but also takes people from the project that could be performing
useful work. If the project is planning the development effort to be Ed
person months, funding will not be available for the staff needed to maintain
the Rayleigh-Norden profile, so the ultimate effect will be potentially higher
costs and a delivery delay or slipped schedule. The Rayleigh-Norden
staffing profile results in the optimum development schedule and is the most
efficient project staffing method.

5.2 Product complexity
An important parameter in both system-level and component-level estimates
is the product complexity. Complexity is determined for both estimate types
in the same manner as described in Section 4, so the methodology is not
repeated here.

5.3 Size estimating process
The size values used in software cost and schedule estimates are derived
from a three-step process:

1. Determine the baseline effective size value and the baseline size
standard deviation for each CSCI. If the system contains function points
as part of the size specification, the function points (including minimum,
most likely, and maximum counts) must be converted into equivalent
(effective) source lines of code as part of this step. Some estimating
tools allow the input of function points as a size measure. The function
point count is converted internally to equivalent source lines of code
using a process known as “backfiring.”

2. Determine the maximum size growth for each CSCI. The maximum
growth is determined from the developer capability, the maturity of the
software product, the product complexity, and the reuse level of pre-
existing source code.

Figure 5-2: Effects of improper staffing

Note: equivalent source
lines related to total code
size, not effective code size.

Brooks’s law is a principle in
software development which says
that adding manpower to a
software project that is behind
schedule will delay it further. It
was coined by Fred Brooks in his
1975 book, The Mythical Man-
Month.

http://en.wikipedia.org/wiki/Software_development�
http://en.wikipedia.org/wiki/Fred_Brooks�
http://en.wikipedia.org/wiki/1975�
http://en.wikipedia.org/wiki/The_Mythical_Man-Month�
http://en.wikipedia.org/wiki/The_Mythical_Man-Month�

43

3. Determine the mean growth estimate for each CSCI. This value is
normally used as the most likely size in the majority of cost and
schedule estimates.

This process is identical to that described for system-level estimates in
Section 4.5, so it is not repeated here.

5.4 Development environment
The first step in evaluating the development environment for the estimate is
to determine the developer’s raw capability; that is, the capability without
the degradation or loading caused by the environment and constraints
imposed by the project requirements. This measure normally changes very
little over time unless there is a major change in the corporate approach to
software development. This rating is described in more detail in Section 8
and Appendix I. The basic technology constant equation is contained in
Section 5.4.4.

The basic capability ratings are consistent across the majority of software
development organizations and are close to the mean basic technology
constant rating for the industry.

5.4.1 Personnel evaluation
The first environment set is the experience level of the personnel within that
environment. There are four experience categories of interest: development
system, development practices, target system, and the required programming
language.

A segment of the environment set is the management factors. They have an
impact on productivity. These factors reflect the use of personnel from other
organizations and the dispersal of development personnel across multiple
sites by the development organization. The combined impact (product) of
these parameters can produce a substantial productivity penalty. These
ratings are described in more detail in Section 8.

5.4.2 Development environment evaluation
The second environment segment evaluation determines the impact of the
stability and availability of the environment; that is the volatility of the
development system and associated practices, the proximity of the resource
support personnel, and access to the development system.

For example, a development environment might be described as follows: the
development practices are expected to experience minor changes on a
monthly average during development due to process improvement. Process
improvement should ultimately improve productivity, but will decrease
productivity in the short-term during the period of change. The development
system will also show productivity losses during system updates that occur
on a monthly average. This is a normal condition. The ideal approach is to
freeze the system hardware and software during the duration of the project.

Detailed descriptions of the development environment ratings are provided
in Section 8.

5.4.3 Product impact evaluation
The third environment segment is used to evaluate the impact of the product
characteristics and constraints on the project productivity. The information
in this segment is reasonably constant for a given product type, and can be

44

combined into a template that may experience few changes within the
product type due to specific product implementations.

Requirements volatility is a challenging parameter to discuss and evaluate.
The volatility definition we use in the guidebook is: the software is a “known
product with occasional moderate redirections,” since the product will have
some functionality improvements beyond the existing products.

The individual product characteristic parameter ratings are described in more
detail in Section 9.

5.4.4 Basic technology constant
The basic technology constant24

 Ctb describes the developer’s raw capability
unaffected by the project environment. The basic technology constant is
calculated using the algorithm in Equation (5-4):

(5-4)

where ACAP is the measure for analyst capability,

AEXP is a measure of developer application experience,

MODP is the use of modern development practices,

PCAP is the programmer capability,

TOOL is use of modern development tools,

RESP is the development system terminal response time, and

TURN is the development system hardcopy turnaround time.

The parameters ACAP, AEXP, MODP, PCAP, RESP and TURN are a subset
of the environment factors described in detail in Section 8.

5.4.5 Effective technology constant
The productivity factor for Jensen-based models (Seer, SEER-SEMTM and
Sage) is the effective technology constant Cte defined in Equation (5-5).
This equation combines the basic technology constant with the product of
the development environment and product characteristic factors if :

24 Jensen, Dr. Randall W. An Improved Macrolevel Software Development Resource
Estimation Model. Proc. of the Fifth Annual International Society of Parametric
Analysts Conference. St. Louis, MO, Apr. 26-28, 1983.

People under time pressure don’t
work better; they just work faster.

 DeMarco and Lister

a
tb eC

TURN
va

Tv

RESPTOOLPCAPMODPAEXPACAPT

∗=

=

∗−=

∗∗∗∗=

2000
*5

11.4
ln70945.3

*

45

∏
=

i
i

tb
te f

C
C (5-5)

where Cte is the effective technology constant,

Ctb is the basic technology constant defined in Sections 5.4.4 and 8,
and

if are the remaining environment factors not included in the basic
technology constant calculation. These are covered in Sections 8-10
and Appendix I.

The effective technology constant is equivalent to the productivity factor
introduced in Sections 4 and 7. The constant combines the impact of the
development environment, which is not captured in the productivity factor,
and the product constraints that are captured in the 13 application types. A
2:1 ratio of the basic to the effective technology constant is common and a
ratio of 4:1 is not uncommon for highly constrained or secure software
systems.

The productivity index (PI) is another widely used form of an effective
technology constant. The PI used by the Software Life Cycle Model
(SLIM®) estimating approach from Quantitative Software Management
(QSM) is described in detail in Section 7.2.2.

5.5 Development cost and schedule
calculations
Seer is an implementation of a component-level model that will be used to
demonstrate cost and schedule estimates. This model was created in 1979
and is the basis of the Sage and SEER-SEMTM (now SEER for Software™)
software estimating tools described in Appendix E.

Equation (5-6) is the Seer representation of the general component-level
effort equation shown in Equation (5-1). The product of the environment
factors is calculated in the denominator of the bracketed portion of Equation
(5-6). Note that D (complexity) is factored out of the product to illustrate
that development cost is a function of complexity in this model. The
equation shows that the simpler the project (higher value of D), the higher
the effort, when given the size and the environment. Conversely, the higher
the complexity, the lower the effort; however, the schedule is increased, as
shown in Equation (5-7). This relationship pair is referred to as the cost-
schedule tradeoff. A longer schedule means a smaller team which, in turn,
equates to higher productivity:

2.1
2.1

4.0
72.4 e

te
d S

C
DE

= person months (5-6)

where Ed is the full-scale development effort (PM),
D is the product complexity,
Cte is the effective technology constant, and
Se is the effective component (CSCI) size (ESLOC).

46

Equation (5-7) specifies the development schedule in months.

4.0
2.04.0

12
e

te
d S

DC
T

= months (5-7)

where Td is the full-scale development schedule (months),
Cte is the effective technology constant,
D is the product complexity, and
Se is the effective component (CSCI) size (ESLOC).

Equation (5-8) is an alternate form of the schedule equation that is consistent
with the general schedule form shown in Equation (5-2). Note again that by
factoring D out of the proportionality constant, the effect of D on the
schedule can be seen explicitly:

3
3

15.7
dd E

D
T

= (5-8)

where Td is the full-scale development schedule (months),
Ed is the full-scale development effort (PM), and
D is the product complexity.

5.6 Verify estimate realism
Once an estimate is complete, it is important to step back and objectively
validate the results. The most important estimate reality checks are:

1. Is the productivity value for each component reasonably close to the
productivity value for that component type (see Table 7-1)?

2. Is the productivity estimate comparable to historical developer
productivity for similar projects?

3. Is the size, including growth, for each component within the range of
5,000 to 200,000 source lines?

4. Is the size estimate, with growth, consistent with the effective size for
completed historical projects?

5. Is the schedule for each component greater than 38.2 dE× ?

All estimates should be validated. Most of the historic data we look at is
based on the effort (cost) and schedule for the development of CSCIs. An
alternate approach that may be used, when historic data is not available, is
comparing your estimate’s productivity to the factors in Table 7-1. The
CSCI of interest is compared to the 13 system types. The software types in
your estimate may not map directly to the task names of those listed in Table
7-1; however, the productivity values are typical of the product type. A
comparison to the general category is usually sufficient to validate your
productivity estimate.

5.7 Allocate development effort and
schedule

47

5.7.1 Effort allocation
The next step in a component estimate is to assign the effort to the
development activities. The distribution of effort varies with the effective
size of the system. The larger the system, the more effort will be spent in
system test and integration. The relative effort spent in creating the
architecture increases with size as well. The cost estimation tools (each
using their own allocation percentages and equations) normally perform the
total project effort allocation for the system.

If you want to calculate the total project effort yourself, use the rough effort
distribution as a function of source size presented in Table 5-2.

Note that the design, develop, and management columns add up to 100
percent. However, each row of the table adds up to a percentage greater than
100 percent since the effort allocations are derived from the full scale
development effort. Full-scale development includes high-level design
(architecture), development (detail design, code and unit test), and internal
component integration and management. Hence, the total effort includes
full-scale development, requirements analysis, and system test.

The total effort is computed from the relationship:

DevelopTotal EkE ×= (5-9)

where ETotal is the total project effort through system integration (PM)

k = 1.21 to 1.40 (an additional 21 to 40 percent effort) depending on
the difficulty of integrating the software component and the system,
and

EDevelop is the project development effort from SRR through FQT.

A commercial standalone software product development may not require any
system integration. Even so, an integration factor value of 1.28 is a
reasonable default for CSCI-system integration.

Most component-level software estimating tools perform the effort
distribution automatically following an allocation table which may differ
from the one presented in Table 5-2. They generally follow the optimum
allocation algorithm based on the Rayleigh-Norden staffing profile. Many
software estimating tools allow the user to specify the effort allocation for
requirements analysis and system test. Table 5-2 is a good guideline for
selecting the appropriate allocations for these activities.

Table 5-2: Total project effort distribution as a function of product size

Size
(KESLOC)

Activity

Rqmts.
(%)

High-Level
Design (%)

Develop.
(%)

Sys.
Test (%)

Mgt.
(%)

1 4 12 77 17 11

25 4 20 67 24 13

125 7 22 63 25 15

500 8 25 56 32 19

Adapted from McConnell, 2006; Putnam and Myers, 1992; Jones, 2000; Boehm et al,
2000; Putnam and Myers, 2003; Boehm and Turner, 2004; Stutzke, 2005.

Larry Putnam is one of the
pioneers in software cost and
schedule estimating. He created
the SLIM® estimating model in
1976 based on project data
obtained from the U.S. Army
Computer Systems Command.

48

5.7.2 Schedule allocation
Schedule allocation depends on the effective size of the software system and
the software development approach. A classic waterfall development
approach has schedule milestones at different times than an incremental or
agile development. There are some guidelines to help approximate
milestones in ballpark estimates. The cost estimation tools (each using their
own allocation percentages and equations) normally perform the schedule
allocation for the system.

If you want to calculate the schedule yourself, use the effort schedule
breakdown shown in Table 5-3.

The overall schedule distribution for any project is based on the entire
project totaling 100 percent of the schedule. The numbers in parentheses
represent typical allocations for each size group. Judgment is necessary
when selecting the specific values from the table for the project in question.

5.8 Allocate maintenance effort
The term “life cycle cost” has multiple meanings. A common definition
relates to the software development process which includes all of the
development phases from requirements analysis through system integration.
Another realistic definition includes all of the phases from requirements
analysis to disposal at the end of the software’s operational life. The second
definition includes maintenance of the delivered software product, which can
be many times the cost of development25

The effort related to the maintenance categories is discussed in Section 4.8.
The calculations and procedures are common to both system- and
component-level estimates. Note that the component-level estimating model
can be used to predict the defect removal effort unless there is adequate
information describing the number of defects introduced during
development; however, there is usually enough information to estimate the
enhancement and operation support costs.

. Historical data shows that it is not
uncommon for the cumulative cost of maintenance to exceed the cost of full-
scale development by the end of the fifth calendar year of operations.

25 Another widely used, inappropriate definition for maintenance is “when the
development budget is depleted.” This is not a definition used in software
estimating, but included for completeness.

Table 5-3: Approximate total schedule breakdown as a function of product size

Size
(KESLOC)

Activity

Requirements
(%)

High-Level
Design (%)

Development
(%)

System
Test (%)

1 6-16 (6) 15-25 (20) 50-65 (55) 15-20 (19)

25 7-20 (7) 15-30 (19) 50-60 (52) 20-25 (22)

125 8-22 (8) 15-35 (18) 45-55 (49) 20-30 (25)

500 12-30 (12) 15-40 (15) 40-55 (43) 20-35 (30)

Sources: Adapted from McConnell, 2006; Putnam and Myers, 1992; Boehm et al, 2000;
Putnam and Myers, 2003; Stutzke, 2005.

49

 Section 6
Estimating Effective Size

Effective size is the most important cost and schedule driver in a software
development estimate. Not only is size the most important driver, it is the
most difficult to estimate. Size comes in many shapes and forms, but most
of them are of little value in realistic effort estimates.

An accurate size estimate could be obtained in the early days of estimating
(the 1960s) by counting source lines of code. The big question in those days
related to how a source line of code (SLOC) was defined: either by punched
card images or executable statements. As software developments increased
in size, the meaning of SLOC became complicated because of the use of
reused code in large projects. The definition of SLOC was still not resolved
until as late as 2005.

The SLOC definition frustration led many researchers to seek alternate
methods of measuring the size of a software development. Albrecht and
Gaffney26

This guidebook discusses the two most widely used software-sizing
approaches: SLOC and FPs. The approaches are radically different from
each other. The discussion of the two methods can be extended to support
others that continue to evolve from the SLOC and FP methods. SLOC are
the focus of the sections starting with Section 6.1. FPs are the topic of
discussion beginning in Section 6.7.

 of IBM proposed a functional measure of software size that
became a second size standard. Function Points (FPs) are a measure of total
software size, which ignores reuse, but is effective very early in the
development process when SLOC is still difficult to predict. FPs spawned
new sizing methods including feature points, object points, and use cases,
among others.

Neither of these approaches solves the problem of estimating the effective
size necessary to project the cost and schedule of a software development.

The early 2000s introduced the use of code counters as a means of obtaining
size information from completed software components. This allowed the
gathering of computer software configuration item (CSCI) or functional
sizing data. Depending on the configuration of the counting software, the
measured size could represent executable SLOC, total SLOC, or something
in-between. This data can help reduce the difficulty in estimating cost and
schedule.

Size information includes three physical components:

1. Amount of new source code to be added (new) to satisfy current product
requirements.

2. Amount of the reused source code to be modified (changed or deleted at
the module level) to satisfy current product requirements.

3. Amount of source code being reused without change from previous
software products.

26 Albrecht, A. J., and Gaffney, J. E. “Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation.” IEEE Transactions
on Software Engineering. Nov. 1983.

 Software is like entropy. It is difficult to
grasp, weighs nothing, and obeys the Second
Law of Thermodynamics; i.e., it always
increases.

 Norman Augustine, 1983

50

CSCI

Component

Component

Component

Module

Module

Module

Figure 6-1: Source code taxonomy

Effort is not simply related to the number of SLOC, but is related to the work
required to use or produce those lines. Reused SLOC is not a zero-effort
component because work is required to incorporate and test that component.

Assuming a constant effort for size is equivalent to assuming the
development includes only new code. That is not a good assumption; the
effort needed to modify and reuse code is different than creating all new
code.

A definition of source code requires some base architecture definitions. The
CSCI is the fundamental element for which effort, schedule, and productivity
data is collected in universally applicable numbers. Lower-level data is very
dependent upon the individual performance and, therefore, not generally
applicable to estimates. System-level data also is difficult to use because of
the combination of different complexity types of the CSCIs.

CSCIs contain elements that can be major subcomponents of the
CSCI or as small as modules (procedures, subroutines, etc.).
There can be several component layers in the CSCI, of which the
smallest element is the module (or unit) (see Figure 6-1).
Modules contain SLOC including executable source lines of
code, declarations, directives, format statements, and comments.

The purpose of Section 6 is to demonstrate the philosophy and
process of developing an effect size value that can be used in a
realistic software cost and schedule estimate.

6.1 Source code elements
A line of source code is defined as a program statement that consists of new,
modified, deleted, or reused code or commercial off-the-shelf (COTS)
software. Total size includes all four statement types. The elements are
defined in subsequent subsections. First, we need to define some important
concepts: the black box and the white box.

6.1.1 Black box vs. white box elements
A black box is a system (or component, object, etc.) with known inputs,
known outputs, a known input-output relationship, and unknown or
irrelevant contents. The box is black; that is, the contents are not visible. A
true black box can be fully utilized without knowledge of the box content.

A white box is a system that requires user knowledge of the box’s contents
in order to be used. Component changes may be required to incorporate a
white-box component into a system. The box is white or transparent, and the
contents are visible and accessible.

A software component becomes a white box when any of the following
conditions exist:

1. A component modification is required to meet software requirements.

2. Documentation more extensive than an interface or functional
description is required before the component can be incorporated into a
software system.

The black box concept, applied to software systems, becomes particularly
important where black boxes (or objects, reusable components, etc.) are used
as components without the engineering, implementation, integration, and test
costs associated with their development. COTS software is an example of an
applied black box. A white box has visible source code; that is, the total

51

Figure 6-2: Black box description depicting

relationship between effective size (St) and box type.

Black Box
St = 0

White Box
St >> 0

accessible source code size in the box is greater than zero. Black box code
is unavailable and unknown; that is, the total source code size within the
black box is conceptually equal to zero (as shown in Figure 6-2). No
knowledge of the black box code is necessary to utilize the black box
component.

COTS software elements satisfy the black box definition. There may be
millions of executable source code lines within the black box, but
knowledge of this internal code is not necessary to utilize the code in a
new system. Only terminal characteristics are required for use.

6.1.2 NEW source code
Source code that adds new functionality to a CSCI is referred to as “new”
code. New code, by definition, is contained in new modules. Source code
modifications packaged in reused (pre-existing) modules are referred to as
“modified” source code.

6.1.3 MODIFIED source code
Source code that changes the behavior or performance of a CSCI is referred
to as “modified” code. Modified code, by definition, is contained in pre-
existing white-box modules. If one countable SLOC within a module is
added, deleted, or modified; the entire countable SLOC in the module is
counted as modified SLOC. For example, if a module contains 60 SLOC of
which we delete 10 SLOC and change 10 SLOC, the modified SLOC count
is 50 SLOC (60 – 10).

6.1.4 DELETED source code
Source code that deletes functionality from a CSCI is referred to as “deleted”
code. Deleted code, by definition, represents the total source code contained
in a deleted module. Source code deletions within a modified module are
not counted as deleted source code.

6.1.5 REUSED source code
Modules that contain executable, declaration, directive, and/or form
statements (satisfies the design, document, and test criteria), and are used
without modification are referred to as “reused” code. Like modified code,
reused code is also contained in pre-existing white-box modules. Reused
code is not modified in any way, but some analysis and/or testing may be
necessary in order to assess its suitability for reuse. The countable source
code in the reused module is known; that is, the total size is greater than
zero. It is possible to reverse-engineer and perform regression tests on
reusable elements.

6.1.6 COTS software
It is important to formally define COTS software because of its impact on
the physical and effective size of the software CSCI. This definition is
clearly described using the definitions of black and white boxes.

Software black box component (COTS) behavior can be characterized in
terms of an input set, an output set, and a relationship (hopefully simple)
between the two sets. When behavior requires references to internal code,
side effects, and/or exceptions, the black box becomes a white box.

COTS products have undefined
size, only functional purposes;
therefore, you cannot include
COTS software as part of the
reuse size. Effort must be added
directly in the effort
computations.

52

COTS software is black-box software for which the countable source code is
not known, only the functional purpose. Since the contents of the COTS
element are unknown (total SLOC is essentially zero, St = 0), the COTS
element can only be tested from the element interface as part of the system.
Reverse-engineering and regression testing cannot be performed on a COTS
element.

6.1.7 Total SLOC
Total SLOC is the sum of the modified, the reused, and the new SLOC. As
indicated above, the contribution of COTS to the total SLOC is zero.

6.2 Size uncertainty
Size information early in a project is seldom, if ever, accurate. Information
presented in a Cost Analysis Requirements Description
(CARD) is generally predicted during a concept development phase prior to
the start of full-scale development. CARD information contains
considerable uncertainty. Size information is often presented as a single
value which leads to a point estimate of cost and schedule; however, the
information is more accurately expressed as three values representing a
minimum (most optimistic), a most likely, and a maximum (most
pessimistic) value to give a more realistic picture of the information.

The size values used in a software cost and schedule estimate are
typically derived from a three-step process. The first step determines
the nominal effective, or most likely, size value and the nominal size
standard deviation. The “low” size value (10 percent probability) is
equal to the mean value minus the nominal size standard deviation in
the normal distribution shown in Figure 6-3. In practice, the size
distribution is skewed (non-normal).

The second step produces an estimate for the maximum size (90
percent probability).

The third step determines the mean growth estimate used as the most likely
size value in the cost and schedule estimate. The mean estimate, assuming a
normal distribution, is the center value of the distribution (as shown in
Figure 6-3). A non-normal mean value will be above the median value for a
distribution, skewed toward the low side. The low, mean, and high size
values are also used in the software risk analysis.

As an example, the CSCI size could be at least 5,000 source lines, most
likely 7,500 lines, or as large as 15,000 lines. The mean value is not
necessarily in the center of the range; that is, the peak of a normal
distribution. The available commercial estimating tools internally adjust the
mean value of the size distribution to a pseudo-normal form with an
associated standard deviation. The mean value formula is:

Figure 6-3: Normal distribution

Probability (sigma)

Sa
m

pl
es

1 2 3 4
50(percent) 84 98 99.9 1.0
0Probability (sigma)

Sa
m

pl
es

1 2 3 4
50(percent) 84 98 99.9 1.0
0

53

Smean = (Smin + 4Sml + Smax)/6 (6-1)

where Smean = mean size value,
 Smin = minimum size value,
 Sml = most likely size value, and
 Smax = maximum size value.

and the standard deviation is

Sstd = (Smax - Smin)/6 (6-2)

6.3 Source line of code (SLOC)
During the summer of 2006, a group of senior software estimators from
major software developers in the aerospace community formulated a SLOC
definition that was compatible with the commercial software estimating tools
and the major estimating methodologies. The definition is also compatible
with current code counting methods. This section contains the result of the
2006 collaboration.

SLOC is a measure of software size. A simple, concise definition of SLOC
is any software statement that must be designed, documented, and tested.
The three criteria (designed, documented, and tested) must be satisfied in
each counted SLOC. A statement may be long enough to require several
lines to complete, but still is counted as one SLOC. Multiple statements may
be entered on a single line, with each statement being counted as a single
SLOC. All source statements can be categorized into one of five categories:

1. Executable
2. Data declarations
3. Compiler directives
4. Format statements
5. Comments

Comment statements do not satisfy the SLOC criteria. Comments are not
designed, documented, or tested, but are part of the software documentation.
Applying the SLOC criteria to the remaining four statement categories, the
following statements are referred to as countable SLOC:

• Executable
• Data declarations
• Compiler directives
• Format statements

Each of the countable SLOC categories is defined in the following
subsections.

6.3.1 Executable
Executable statements define the actions to be taken by the software. These
statements do not include logical end statements (fails SLOC criteria) or
debug statements inserted by the programmer for development test unless the
debug code is required in the software requirements. In other words, non-
deliverable debug code is not formally designed or tested, and likely not
documented either—and therefore ignored in the executable SLOC count.

54

6.3.2 Data declaration
Data declarations are formally designed, documented, and tested when they
are written (or defined). Declarations are commonly copied into software
elements once they have been defined.

6.3.3 Compiler directives
Compiler directives are formally designed, documented, and tested when
they are written. Include statements for the data definitions are each counted
as one SLOC where entered.

6.3.4 Format statements
Format statements are remnants of the Fortran and COBOL programming
languages, but do satisfy the criteria for definition as a SLOC. Format
statements often require multiple lines for definition.

6.4 Effective source lines of code
(ESLOC)
A realistic size estimate is necessary to reasonably determine the associated
software development cost and schedule. Physical source instructions
include all instructions that require design, documentation, and test. Debug
statements emphasize the importance of this source instruction definition; for
example, debug statements are formally designed, documented, and tested
only if required by the development contract. Non-required debug
statements are a normal development product needed only to produce other
source instructions. Non-required debug statements are not designed,
documented, or thoroughly tested; thus, they are excluded from the source
line count.

Resource estimates based on physical source lines for modified software,
and systems containing reusable components, cannot account for the
additional resource demands attributable to reverse-engineering, test and
software integration. The common method used to account for the added
resource demands is to use the effective software size.

6.4.1 Effective size as work
Work is a useful and necessary concept when applied to defining
effective size for cost calculation. Development SLOC are
numerically identical to physical source lines when the total
software product is being developed from scratch or as new source
lines. Most software developments, however, incorporate a
combination of new source code, existing code modified to meet
new requirements, unmodified existing code, and off-the-shelf
components. Physical SLOC, as defined in this guidebook, do not
relate directly to the development or effective size. Effective size is
larger than the actual change size; that is, development size is equal
to, or greater than, the sum of new and modified source lines.
Effective size is usually smaller than the total physical source lines
in the software product or there would be no incentive to utilize
reusable elements in software development.

The molecular software view in Figure 6-4 illustrates the need for a
mechanism to determine the effective software size (Se). The ideal

Well structured

Poorly structured

Intersegment binding

Code segment

Figure 6-4: Molecular view of software demonstrates the

impact of structure on effective size

55

inter-molecular coupling between software elements, be they
elements, segments, blocks, objects, or any other lumping, is loose.
Loose coupling—the goal of structured design, object-oriented design,
and most other design approaches—makes it possible to modify or
insert elements without reverse-engineering or testing portions of the
software system that are not to be modified. The other coupling
extreme (tight coupling) occurs in what we refer to as “spaghetti”
code. Tight coupling requires complete reverse-engineering and
integration testing to incorporate even modest software changes.

The relationship between size elements and the size adjustment factors
is illustrated in Figure 6-5. The shaded portion around the additions
and modifications in the figure represent the software system areas
that must be reverse-engineered, and tested, but are not modified.

Effective task size must be greater than or equal to the number of
source lines to be created or changed. Modified software systems
require accounting for the following cost impacts not present in new
systems:

1. Modifications cannot be made to a system until the engineers and
programmers understand the software to be modified. If the
original developer makes the changes, modifications are much
simpler than if the developer is unfamiliar with the architecture and
source code. The software architecture determines the reverse-
engineering required to implement changes. Clear, well-organized
documentation also reduces the system learning curve and the required
reverse-engineering. The rationale for counting the total executable
lines in a modified module (50-200 SLOC), instead of the few physical
lines changed, is the effort impact of the change is much greater than
the physical change unless the module is well structured and
documented and the module is being modified by the originator.

2. The effort required to implement (code) software modifications must
include effort to correctly implement interfaces between existing
software and the modifications. This requires a level of knowledge in
addition to that discussed in the first point.

3. All software modifications must be thoroughly tested. The test effort in
utopian systems consists of testing no more than the software changes.
In reality, total system regression tests are required prior to delivery to
ensure correct software product performance. It is virtually impossible
to reduce integration and test requirements to include no more than
software modifications.

4. Although it is not obvious from the discussion to this point, the effective
size must also be adjusted to account for the development environment;
that is, the quality of the developer, experience with the software, and
the experience with the development environment.

Each of these four activities increases effective task size and is manifested as
increased cost and schedule. Major estimating systems increase
development size to adjust for the added effort requirements. COCOMO27

defines this adjustment term, the Adaptation Adjustment Factor (AAF), as:

27 Boehm, B.W. Software Engineering Economics Englewood Cliffs, NJ.: Prentice-
Hall, Inc., 1981.

 Sold

SnewSmod

Stot = Sold + Snew
Schg = Snew + Smod

Figure 6-5: Development effort required to
incorporate changes to an existing software

system includes efforts to produce Snew, Smod and
integration effort in peripheral shaded areas

Resource estimates based on
physical source lines for
modified software and systems
containing reusable components
cannot account for the
additional resource demands
attributable to reverse
engineering, test, and software
integration. Effective size is the
common method used to account
for the added resource demands.

56

testimpdes FFFAAF 3.03.04.0 ++= (6-3)

where

desF = the fraction (percent redesign [%RD], see Section 6.4.2.1)
of the reused software requiring redesign and/or reverse-
engineering,

impF = the fraction (percent reimplementation [%RI], see Section
6.4.2.2) of the reused software to be modified, and

testF = the fraction (percent retest [%RT], see Section 6.4.2.3) of
the reused software requiring development and/or
regression testing.

The simplified Jensen effective size28

testimpdes FFFSAF 35.025.04.0 ++=

 uses a similar adjustment equation,
referred to as the Size Adjustment Factor (SAF):

. (6-4)

Equation (6-4) places greater emphasis on the development cost and
schedule impact of the test activity than the relative impact captured in
Equation (6-3). The 40-25-35 division of effort is consistent with historic
data and closer to the traditional 40-20-40 division of the development effort
heuristic.

A simple example of the AAF factor in practice is as follows:

Assume a software module containing 50 executable SLOC. The
original module was implemented by an outside organization. The
module’s internal algorithm is poorly structured and documented
(normal), and lacking test data and procedures. The module has been
modified by a third organization. The planned use of this module
requires only small code changes to satisfy current system
requirements. Your use of this module will require reverse-
engineering (redesign), the modification is assumed to involve only
10 percent of the module (reimplementation), and testing
(modifications and regression). The resulting values for the design,
implementation, and test factors are essentially 1.0. Thus, the AAF
value is also 1.0.

6.4.2 Effective size equation
Effective size is generally defined by one of the two relationships used for
computing the effective size or effective source lines of code (ESLOC). The
terms in the two relationships must satisfy the source code criteria.

SAFSSSS reusedneweffective ++= mod (6-5)

where newS = new software SLOC,
 modS = modified software SLOC,

reusedS = reused software SLOC, and
 SAF = Size Adjustment Factor (Equation 6-4).

28 Jensen, R.W. A Macrolevel Software Development Cost Estimation Methodology.
Proc. of the Fourteenth Asilomar Conference on Circuits, Systems, and Computers.
Pacific Grove, CA. Nov. 17-19, 1980.

57

AAFSSSS reusedneweffective ++= mod (6-6)

The first equation (Equation 6-5) is used by all Jensen-based (Seer, SEER-
SEMTM and Sage) estimating tools.

The second equation (Equation 6-6) is used by all COCOMO-based
(COCOMO I, REVIC, COCOMO II) estimating tools.

The effective size values computed by both methods are approximately
equal. The first equation is used for consistency in the software data
collection form described in Appendix I.

The following subsections explain the elements of the AAF and SAF
equations in greater detail.

6.4.2.1 Design factor
The design factor Fdes is the ratio of the reverse-engineering effort of reusedS
required for the software development to the amount of work that would be
required to develop reusedS from scratch. A reasonable Fdes approximation
can be obtained from the ratio of the number of routines (procedures,
subroutines, etc.) to be reverse-engineered to the total number of routines in

reusedS .

6.4.2.2 Implementation factor
Implementing the software system changes in Figure 6-5 requires Snew +
Smod be produced. Additional effort must be added to understand the
interfaces between the changes (enhancements and modifications) and

reusedS . The extra effort includes establishing calling sequences, the number
of parameters, the units assumed by each parameter, etc. Thus, a reasonable
value for Fimp is the ratio between the interface effort and the effort required
to produce the interface definitions from scratch. The interface effort is
generally a small number (less than 10 percent).

6.4.2.3 Test factor
The Ftest factor is the ratio of the reusedS test effort anticipated through
acceptance of the upgraded software system to the effort required to test the
reused code from scratch. Regression tests (acceptance test, etc.) are
necessary to ascertain correct system performance with the incorporated
upgrade. This reusable effort includes test and integration plans, procedures,
data, and documentation.

Example – Effective computation with reusable components
Assume a reasonably well-structured software product is being
upgraded by the original developer. The product has the following
size attributes and an average module size of 2,000 SLOC:

Snew = 20,000 SLOC (10 procedures)
Smod = 40,000 SLOC (20 procedures)
Sreused = 100,000 SLOC (50 procedures)

Software reverse-engineered

58

 without modification (10 procedures)

Test effort (including test plan and procedure development),
salvageable from previous product versions, is 25 percent of total test
effort of Sreused. The additional effort required to properly interface
the software enhancements and modifications is 1 percent of Sreused.

2.0
50
10

==desF

01.0=impF

Ftest = 1.0 – 0.25 = 0.75

Se = 60,000 + 100,000 [0.4(0.2) + 0.25 (0.01) + 0.35 (0.85)]

 = 94,500 ESLOC

To demonstrate the effective size impact of developer software
product experience, let us assume the original software product was
poorly documented and built by a competing contractor. To adjust
for the increased reverse product engineering, we change the Fdes
factor to 1.0 (reverse-engineer the entire product), and change Ftest to
1.0 (no access to the original test material). The resulting effective
size is:

Se = 60,000 + 100,000 [0.4(1) + 0.25 (0.01) + 0.35 (1)]

 = 135,250 ESLOC

The effective source increase due to lack of developer product
familiarity is 40 percent over the original 94,500 ESLOC estimate
due to environment changes.

6.5 Size growth
Some experts consider software code growth to be the single most important
factor in development cost and schedule
overruns. Code growth is caused by a number
of factors: requirements volatility, size
projection errors, product functionality changes,
and human errors.

Size projection errors come from many sources.
Errors may stem from a lack of historical size
data. Errors can also arise from a need to keep
the development cost low in order to obtain
project funding or to submit a winning proposal
by a contractor. Size is the primary cost driver
in the development estimate. Figure 6-6 shows
samples of size growth from several major
software developments (represented by A – K on
the x-axis). The reasons for growth in these
projects are not available, which complicates the
development of any growth model.

Size errors can also arise from lack of
experience and the simple human limitations of
the estimator. One reason dates back to Greek mythology and the legend of

Figure 6-6: Historic project data basis for growth algorithm

0

200

400

600

800

1000

1200

1400

Si
ze

 (K
 M

em
or

y
W

or
ds

)

A B C D E F G H I J K

Proposed Actual

100%

238%
84% 163%

105% 175%

81%

120%

121%
93%

119%

0

200

400

600

800

1000

1200

1400

Si
ze

 (K
 M

em
or

y
W

or
ds

)

A B C D E F G H I J K

Proposed Actual

100%

238%
84% 163%

105% 175%

81%

120%

121%
93%

119%

59

Pandora. According to the myth, Pandora opened a jar (pithos) in modern
accounts referred to as "Pandora's box", releasing all the evils of mankind—
greed, vanity, slander, envy, lust— leaving only one evil inside once she had
closed it again. When Pandora opened the jar the second time, she
unleashed the worst of all afflictions on the human race -- Hope. Because of
hope we don’t learn from our mistakes and, consequently, are forever cursed
with unbounded optimism.

Another reason is the human mind cannot wrap itself around a large number
of independent objects. Various sources place the limits anywhere from 7
+/- 2 to as few as 3 +/- 2 objects. Thus, details get buried or hidden in
our projection of the software required to perform a complex task.
Software size is almost always underestimated, and the magnitude of
this underestimate is usually not trivial.

There have been several studies on software code growth published
during the past 15 years. “Several” does not necessarily equate to
enough. The data from the most recent of these studies29

Watts Humphrey

 is typical for
embedded software system development. The growth range for these
projects is between 81 percent and 238 percent.

30

6.5.1 Maximum size growth

, one of the driving forces behind the Capability
Maturity Model (CMM), states that while there is no good data to
support these figures, there are some practical estimating rules of
thumb, which are shown in Table 6-1. These rules are consistent with
project data, and are reasonably good guidelines.

Barry Holchin31

The region between the maximum and minimum complexity
lines (Dmax and Dmin) represents the potential growth region,
as shown in Figure 6-7. The values of Dmax and Dmin are 15
and 8, respectively. The values are derived from the ratio of
the development cost to the development time:

, a well-known cost researcher and estimator,
proposed a code growth model that is dependent on product
complexity (D), project maturity, and the distribution of new
and reused source code. The Holchin model provides a
mechanism to predict the physical (or total) growth during
software development.

3/ dd TcED = (6-7)

where D = complexity,
 c = scaling constant,

Ed = development effort (person-years), and
Td = development time (years).

A low complexity (high D value) project allows higher
staff levels to be applied to the development over a shorter period. A high-
complexity project necessitates a smaller development team over a longer

29 Nicol, Mike. Revitalizing the Software Acquisition Process. Acquisition of
Software Intensive Systems Conf. 28 Jan 2003.
30 Humphrey, Watts. Managing the Software Process. Addison-Wesley. New York,
NY: 1989.
31 Holchin, Barry. Code Growth Study. 4 Mar. 1996.

Table 6-1: Code growth by project phase

Completed Project
Phase

Code Growth
Range (Percent)

Requirements 100-200

High-Level Design 75-150

Detailed Design 50-100

Implementation 25-50

Function Test 10-25

System Test 0-10

Figure 6-7: Modified Holchin growth algorithm
(Both axes represent percentages)

Top line (D=8), Middle (D=12), Bottom (D=15)

Modified Holchin Growth

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

100 0
Maturity

A
dd

-O
n

G
ro

w
th

D=15
D=8
D=12

60

period. The complexity value 15 in the Sage, System Evaluation and
Estimation of Resources Software Estimating Model SEER-SEMTM (now
SEER for Software™), and SLIM® estimating tools equates to the
complexity of a standalone software application that does not interact with
the underlying operating system. For example, the software (D =15) can be
an accounting system. A high-complexity project (D = 8) equates to an
operating system development.

The first step in the growth calculation is to establish the range of the growth
factor (shown as D=12 in Figure 6-7) for the development under
consideration. The project complexity rating of 12 (a satellite ground
station) represents an application with significant interaction with the
underlying system. The growth curve (shown as a dashed line) is calculated
from the relationships:

7/)8)((min0max0min00 −−+= DCCCC (6-8)

7/)8)((min100max100min100100 −−+= DCCCC (6-9)

where C0 = 0 end point of a desired growth curve for an assigned D

 C0max = upper bound end point for software growth curve assuming
 D range of 8 to 15

 C0min = lower bound end point for software growth curve

 C100 = 100 end point of a desired curve for and assigned D

 C100max = upper bound end point for software growth curve

 C100min = lower bound end point for software growth curve

From an estimating point of view, the physical code growth is important, but
not as important as the total size growth. The Holchin model has been
extended to project the growth in effective size necessary for development
effort calculation. The growth space is, graphically, the same as the space
shown between D = 8 and D = 15 in Figure 6-7.

Step two of the growth calculation accounts for the project maturity level.
The maturity level adjusts the software growth to the current status of the
software development. The modified Holchin maturity table is shown in
Table 6-2. The maturity factor M is applied to the effective size growth
equation:

)100/0.1(*)(0.1 01000 MCCCh −−++= (6-10)

where h represents the total relative code growth and

M = the maturity factor value.

As an example, if we assume the growth projection is being made at the time
of the Software Requirements Review (D=12 @ SRR), the mean relative
code growth of complexity is 1.16, or approximately 16 percent. Maximum
growth is 1.55. This growth effect can be seen in Tables 6-3 and 6-4.

The maturity factors shown graphically in Figure 6-7 are summarized for
normal incremental complexity values for mean growth in Table 6-3 and
Table 6-4 for maximum growth.

Table 6-2: Modified
Holchin maturity scale

Maturity M

Concept 0

Source 15

C/A 33

SRR 52

PDR 67

CDR 84

FQT 100

61

The third step in calculating growth projects the total size growth at the end
of development from:

0hSSTG = (6-11)

where STG = total size with growth and

S0 = projected size before the growth projections.

The size growth projection at this point is for “total” source code size. The
size growth projection necessary for an estimate is based on the “effective”
source code size. In that regard, the growth must include not just physical
growth, but the impact of the software modifications, reverse-engineering,
regression testing, etc. The effective size is given by:

)35.25.4(.mod testimpdesreusedneweff FFFSSSS ++++= (6-12)

where Fdes = relative design factor,
Fimp = relative implementation factor, and
Ftest = relative test factor.

The new source code is specified by Snew, the modified source code by Smod,
and Sreused specifies the reused source code value. There are three more
areas that will experience growth, from the effective size point of view:

1. Reverse-engineering of the reused code to define modifications required
by the new system; that is, reuseddesdes SFS 4.0= .

Table 6-4: Maximum growth factors (h) for normal complexity values as a function of project maturity

 Complexity
Maturity M 8 9 10 11 12 13 14 15 Comments
Concept 0 2.70 2.53 2.36 2.19 2.01 1.84 1.67 1.50 Start requirements

Source 15 2.47 2.32 2.17 2.03 1.88 1.73 1.59 1.44 Source Selection (proposal complete)

C/A 33 2.19 2.07 1.95 1.84 1.72 1.60 1.49 1.37 Start full scale development

SRR 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29 Requirements complete

PDR 67 1.66 1.60 1.54 1.48 1.42 1.35 1.29 1.29 Architecture complete

CDR 84 1.40 1.36 1.33 1.30 1.26 1.23 1.20 1.16 Detail design complete

FQT 100 1.15 1.14 1.14 1.13 1.12 1.11 1.11 1.10 Development complete

Table 6-3: Mean growth factors (h) for normal complexity values as a function of project maturity

 Complexity
Maturity M 8 9 10 11 12 13 14 15 Comments
Concept 0 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 Start requirements

Source 15 1.43 1.39 1.34 1.30 1.26 1.22 1.17 1.13 Source Selection (Proposal complete)

C/A 33 1.35 1.31 1.28 1.24 1.21 1.18 1.14 1.11 Start full scale development

SRR 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09 Requirements complete

PDR 67 1.19 1.18 1.16 1.14 1.12 1.10 1.09 1.07 Architecture complete

CDR 84 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05 Detail design complete

FQT 100 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 Development complete

62

2. Interfaces to the modified code must be defined as a percentage of
reusedimpimp SFS 25.0= .

3. Regression testing of the reused code to assure proper performance of
the upgraded system; that is reusedtesttest SFS 35.0= .

The effective size growth can be approximated by applying the growth factor
h to each of the three areas. The effective size growth is then given by:

)(mod testimpdesnewTE SSSSShS ++++= (6-13)

where STE = effective size growth.

6.6 Size risk
The size values used in the software cost and schedule estimates are derived
from a three-step process. The process is defined as follows:

1. Determine the baseline effective size value and the baseline size
standard deviation. The effective size estimating method is described in
Section 6.4. The nominal size value is the mean value of the skewed
size distribution in Figure 6-8. The “Baseline” size value (10 percent
probability) is equal to the mean size value minus the mean size
standard deviation. The baseline size is generally computed directly
from the CARD information.

2. Estimate the maximum size growth (90 percent probability)
that is approximated by “Max” in Figure 6-8. The maximum
growth value is determined from the developer capability, the
maturity of the software product, the product complexity, and
the reuse level of pre-existing source code.

3. Determine the mean growth estimate that corresponds to the
most likely size value in the cost and schedule estimates. The
baseline, mean and max size values are also used in the
software risk analysis. The growth estimating approach is
described in greater detail in Section 6.6.1.

6.6.1 Source code growth
Source code growth is a significant factor in cost and schedule
overruns in software development projects. As introduced in
Section 6.5.1, Holchin’s32

The most optimistic software development cost and schedule estimates are
based on the effective software size discussed in Section 6.4. The size
growth Smax predicted by the extended model corresponds to the maximum
size at 90 percent probability; that is, the maximum size has a 90 percent
probability of being less than or equal to the maximum value. The
corresponding development cost and schedule represents a risk estimate

 source code growth model bases
physical code growth on software product complexity, product
maturity, and software reuse level. The Holchin model growth predictions
are comparable to qualitative historical data. The model described in this
guidebook to project the effective code growth necessary for a realistic
development cost and schedule estimate is an extension of the Holchin
algorithm.

32 Holchin, B. Code Growth Study. Dec. 1991.

Figure 6-8: Effective size growth distribution

Size Growth

P
ro

ba
bi

lit
y

Most likely

Mean

Max

Baseline

Size Growth

P
ro

ba
bi

lit
y

Most likely

Mean

Max

Baseline

The Sage model uses the Holchin
algorithm extension to project
effective code growth

63

assuming size growth only. The maximum development impact corresponds
to the maximum baseline size estimate with maximum growth.

For practical purposes, we can view the skewed distribution in Figure 6-8 as
a triangular size growth distribution to simplify the mean growth calculation.
The error introduced by this assumption is negligible. The mean growth size
for the triangular distribution is given approximately by the equation:

 Smean = 0.707Sbaseline + 0.293Smaximum (6-14)

From the Holchin model, we know that the amount of software growth is
also a function of the software product maturity factor. The growth factor
decreases as the project maturity increases, as one would expect. Project
maturity defines the level of knowledge the developer has about the systems
being developed.

6.7 Function points
FP analysis33

We need to be careful here to point out that there are many flavors of FP
counting rules. Classic FPs in this guidebook conform to the definition in
the Function Point Counting Practices Manual, Release 4.2. The ISO FP
rules are derived from Release 4.1 of the FP manual. 3D FPs are an
extension of the International FP Users Group (IFPUG) Release 4.1
developed by Steve Whitmire

 is a method for predicting the total size of a software system.
FPs measure software size by quantifying the system functionality provided
to the estimator based primarily on the system’s logical design.

34 of the Boeing Airplane Company for the
7X7 aircraft series. Feature Points were created by Capers Jones35

6.7.1 Function point counting

 of
Software Productivity Research for real-time and systems software. There
are other FP variations almost too numerous to mention. This guidebook
uses the IFPUG 4.2 rules and the 3D extension to briefly describe the use of
FPs in software size estimation.

The overall objective of the FP sizing process is to determine an adjusted
function point (AFP) count that represents the functional size of the software
system. There are several steps necessary to achieve this goal. The
procedure is as follows:

1. Determine the application boundary.

2. Identify and rate transactional function types to determine their
contribution to the unadjusted function point (UFP) count.

3. Identify and rate data function types to determine their contribution to
the UFP count.

4. Determine the value adjustment factor (VAF). This factor adjusts the
total size to satisfy operational requirements.

33 International Function Point Users Guide. Function Point Counting Practices
Manual: Release 4.2. IFPUG. Westerville, OH: 2004. (Release 4.2 makes it possible
to correctly separate size and effort in an estimate.)
34 Whitmire, S. 3D Function Points: Scientific and Real-Time Extensions to Function
Points. Proc. of the 10th Annual Pacific Northwest Software Quality Conference,
1992.
35 Jones, Capers. Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill. New York NY: 1997.

Function points measure the size of
what the software does, rather than
how it is developed and implemented.

Carol A. Dekkers, 1999

64

5. Calculate the AFP count.

A couple of basic terms, application boundary and transaction, apply to FP
counting.

The application boundary is an imaginary line that separates the application
from its external environment. Identification of component types for all
dimensions depends on the proper placement of this line.

A transaction is a group of data and operations defined by the application
domain. Transactions must have the property of crossing the application
boundary. Data in a transaction can flow either in one direction or both
ways across the application boundary. A unique transaction is identified by
a unique set of data contents, a unique source and/or destination, or a unique
set of operations.

Since the rating of transactions and data functions is dependent on both
information contained in the transactions and the number of files referenced,
it is recommended that transactions be counted first.

The UFP count is determined in steps 2 and 3 (which are discussed later in
this section); it is not important if step 2 or 3 is completed first. In graphical
user interface (GUI) and object-oriented (OO) type applications, it is easier
to begin with step 2.

The AFP count is a combination of both the UFP count and the general
system characteristics (GSC) adjustment which is discussed in Section 6.7.4.
The AFP count is the adjusted total system size.

6.7.2 Function point components
This section introduces and describes the components utilized in FP analysis.
There are seven components:

1. Internal logical files (ILF)
2. External interface files (EIF)
3. External inputs (EI)
4. External outputs (EO)
5. External inquiries (EQ)
6. Transforms (TF)
7. Transitions (TR)

The last two components (transforms and transitions) are used only by the
3D FP-counting approach. 3D FPs are built upon a 3D model of software
size. The model was the result of research into the sizing concerns with
development of database, scientific, and real-time applications.

Tom DeMarco was the first to characterize software as having three
dimensions:36

The control dimension is concerned with the state-specific behavior of the
software system and includes issues such as device control, events,
responses, and timeliness. This leads to the need to consider the size of the

 data, function, and control. The size contribution of the
function dimension is captured by the transform FP component. For
example, a weather prediction function has few inputs and outputs, small
logical file requirements, and considerable mathematical computations (not
adequately dealt with in traditional FP analysis).

36 DeMarco, Tom. Controlling Software Projects. Yourdon Press, 1982.

65

behavior-related (states and transitions) aspects of the system. Examples of
control dimension software are avionics and process control, neither of
which is adequately covered in the classic FP (data) dimension.

The FP approach described in this guidebook accurately represents the
IFPUG 4.2 counting definition by ignoring the transform and transition
components. However, ignoring them will result in low FP counts for many
applications covered by this guidebook.

In addition, we must consider the application boundary, which is not a
component, but an imaginary line that separates the elements to be
developed, modified, and/or enhanced from the system elements that reside
outside the project scope.

There are some definitions necessary to help in rating the first five FP
components:

1. Record Element Type (RET)
2. File Type Referenced (FTR)
3. Data Element Type (DET)
4. Processing Steps (PS)
5. Semantic Statement (SS)

All of the classic FP components are rated based upon
RETs, FTRs and DETs. As shown in Table 6-5, the
transform component of the 3D FPs is rated according
to the number of PSs and SSs. The rating measures
are described in detail in the sections associated with
the component types.

6.7.2.1 Application boundary
Computer software systems typically interact with other computer systems
and/or humans. We need to establish a boundary around the system to be
measured (sized) prior to classifying components. This boundary must be
drawn according to the sophisticated user’s point of view, as shown in
Figure 6-9. Once the border has been established, components can be
classified, ranked, and tallied. In short, if the data is not
under control of the application or the development, it
is outside the application boundary. For business and
scientific applications, this boundary is often the
human-computer interface. For real-time applications,
the boundary can also be the interface between the
software and those external devices it must monitor and
control.

The internal logical file (ILF) is the data contained
entirely inside the system boundary and maintained
through the application transactions. ILFs define the
internal data structure of the system to be developed.
Data maintenance includes the addition, deletion,
modification, or access by a transaction.

Table 6-5: Function point rating elements

Component RETs FTRs DETs PSs SSs

Internal logical files ● ●

External interface
files ● ●

External inputs ● ●

External outputs ● ●

External inquiries ● ●

Transforms ● ●

Transitions

Figure 6-9: Function point system structure

66

In order to identify the application boundary, consider:

• Reviewing the purpose of the FP count
• Looking at how and which applications maintain data
• Identifying the business areas that support the applications

An external interface is data that is maintained by another application that is
directly accessed by our software system without using the services of the
external system. Our software system may not modify the external data. If
the data is modified, the data is considered to be within the application
boundary and part of our system.

Under OO design and practices, external interfaces should not be used. It is
frowned upon to directly access data maintained by another application as it
violates the principles of encapsulation and data hiding emphasized by
software development best practices.

The boundary may need to be adjusted once components have been
identified. In practice, the boundary may need to be revisited as the overall
application is better understood. Also, FP counts may need to be adjusted as
you learn more about the application.

6.7.2.2 Internal Logical File
An ILF is a user-identifiable group of logically related data that resides
entirely within the application boundary and is maintained through external
inputs (EI); maintaining is the process of modifying data (adding, changing,
and deleting) via an elementary process (namely an EI).

Even though it is not a rule, an ILF should have at least one external output
and/or external inquiry. That is, at least one external output and/or external
inquiry should include the ILF as an FTR. Simply put, information is stored
in an ILF, so it can be used later. The external outputs (EO) or external
inquiries (EQ) could be to/from another application.

Again, even though it is not a rule, an ILF should also have at least one
external input. If an ILF does not have an EI, then one can ask where the
information for the ILF comes from. The information must come from an
EI. Understanding this relationship improves the thoroughness of the FP
count.

A DET is a unique user-recognizable, non-recursive (non-repetitive) field.
A DET is information that is dynamic and not static. A dynamic field is read
from a file or created from DETs contained in an FTR. Additionally, a DET
can invoke transactions or be additional information regarding transactions.
If a DET is recursive then only the first occurrence of the DET is considered,
not every occurrence.

An RET is a set of DETs that are treated by the software system as a group.
RETs are one of the most difficult concepts in FP analysis to understand. In
a normalized data or class model, each data entity or class model will
generally be a separate internal data structure with a single record type. In a
parent-child relationship, there is a one-to-one association.

Most RETs are dependent on a parent-child relationship. In this case, the
child information is a subset of the parent information; or in other words,
there is a one-to-many relationship. For example, consider a warehouse
stock display program. One logical group may contain the stock inventory
and a second logical group contains a detailed description of the stock items.

67

One configuration is linked by a key (stock item number) to the data
contained in the two files. Thus, the FP count produces 2 ILFs with 1 RET
each.

In an aggregation, or collection, data relationships exist between two or more
entities. Each entity is a record type and the entire relationship is considered
a single internal logical file. The aggregate structure requires a boundary
around both groups. Each group is considered to be a record type with a
common internal data structure. The aggregate structure yields a FP count of
1 ILF and 2 RETs.

ILFs can contain business data, control data, and rules-based data. It is
common for control data to have only one occurrence within an ILF. The
type of data contained in an ILF is the same type of data that is possible for
an EI to contain.

There are some special cases that need to be explained, Real Time and
Embedded Systems and Business Applications. Real Time and Embedded
Systems, for example, Telephone Switching, include all three file types:
Business Data, Rule Data, and Control Data. Business Data is the actual
call, Rule Data is how the call should be routed through the network, and
Control Data is how the switches communicate with each other. Like
control files, it is common that real-time systems will have only one
occurrence in an internal logical file.

Another case includes Business Applications. Examples of
business data are customer names, addresses, phone
numbers, and so on. An example of Rules Data is a table
entry that tells how many days customer payments can be
late before they are turned over for collection.

Ranking:

Like all components, ILFs are rated and valued. The rating
is based upon the number of data elements (DETs) and the
record types (RETs). Table 6-6 lists the level (low,
average, or high) that will determine the number of
unadjusted FPs in a later step.

Counting Tips:
Determine the appropriate number of RETs first (Table 6-
7). If all or many of the files contain only one record type,
then all that is needed to be known is if the file contains more or less than 50
DET’s. If the file contains more than 50 data elements, the file will be rated
as average. If the file contains less than 50 data element
types, the file will be considered low. Any files that contain
more than one record type can be singled out and counted
separately.

The relative size impact of each of the FP component types is
summarized in Table 6-6. If the component evaluation
results in a low ranking, the total number of FPs is multiplied
by the weight in the first ranking column. For example, an
evaluation produces 3 internal logical files for the
application. The number of unadjusted FPs corresponding to
3 low ILFs is 21 (3 x 7) as shown in Table 6-8.

Table 6-7: Ranking for Internal Logical and External Interface
 Files

 1-19 DETs 20-50
DETs 51+ DETs

1 RET Low Low Average

2-5 RETs Low Average High

6+ RETs Average High High

Table 6-6: Table of weights for function point calculations

Component Types
Ranking

Low Average High

Internal Logical File 7 10 15

External Interface File 5 7 10

External Input 3 4 6

External Output 4 5 7

External Inquiry 3 4 6

Transform 7 10 15

Transition 3

68

Assume our ILF count process produces 3 low complexity ILFs, 5 average
size ILFs and 1 high-complexity ILF. The total ILF function points for the
application will be 86 UFPs, as depicted in Table 6-8.

6.7.2.3 External Interface File
An EIF is a user-identifiable group of logically related data that resides
entirely outside the application and is maintained by another application.
The EIF is an ILF for another application, primarily used for reference
purposes.

Maintained refers to the fact that the data is modified through the elementary
process of another application. Values are updated as necessary. An
elementary process is the smallest unit of activity that has meaning to the
user. For example, a display of warehouse stock may be decomposed into
several subprocesses such that one file is read to determine the stock on hand
and another file is read to obtain a description of the stock. The issue is the
elementary process.

6.7.2.4 External Input
An EI is an elementary process that handles data or control information
coming from outside the application boundary. This data may come from a
data input screen, electronically (file, device, interface, etc.), or from another
application. The primary intent of an EI is to maintain one or more ILFs
and/or to alter the behavior of the system. Calculated and stored values are
external input data elements. Calculated values that are not stored are not
external input data elements. Calculated values that are not stored have not
crossed the application boundary and do not maintain an ILF. Elements
consist of data or control information. The data, or control information, is
used to maintain one or more internal logical files. Control information does
not have to update an ILF.

It is common for information in GUI or OO environments to move from one
display window to another. The actual movement of data is not considered
an external input because the data has not crossed the application boundary
and does not maintain an ILF.

An FTR is a file type referenced by a transaction. An FTR
must also be an ILF or an EIF.

The external input ranking is defined in Table 6-9. The total
number of UFPs attributable to external inputs is obtained
from Table 6-6 by ranking the EIs, adjusting the total of each
ranked group by the EI weighting factors, and accumulating
the EI subtotal (as in Table 6-8 for the ILFs).

6.7.2.5 External Output
An EO is an elementary process that sends derived data or control
information outside the application boundary. The primary intent of an
external output is to present information (reports) to a user or output files to

Table 6-8: Unadjusted function point calculation

Element Types
 Ranking

Total
Low Average High

Internal Logical File 3 x 7 = 21 5 x10 = 50 1 x 15 = 15 86

Table 6-9: Ranking for External Inputs

 1-19 DETs 20-50
DETs 51+ DETs

0-1 FTRs Low Low Average

2-3 FTRs Low Low High

4+ FTRs Average High High

69

other applications. An external output may also maintain one or more ILFs
and/or alter the behavior of the system. Since the information was inside the
boundary, it must be contained in an ILF or EIF.

Derived data is data that is processed beyond direct retrieval
and editing of information from internal logical files or
external interface files. Derived data is the result of
algorithms and/or calculations.

The external output ranking is defined in Table 6-10. The
total number of UFPs attributable to external outputs is
obtained from Table 6-6 by ranking the EOs, adjusting the
total of each ranked group by the EO weighting factors, and
accumulating the EO subtotal (as in Table 6-8 for the ILFs).

6.7.2.6 External Inquiry
An EQ is an elementary process with both input and output components that
result in data retrieval from one or more internal logical files and external
interface files. This information must be sent outside the application
boundary. The processing logic contains no mathematical formulas or
calculations, and creates no derived data. No ILF is maintained during the
processing, nor is the behavior of the system altered.

The IFPUG definition explicitly states the information must be sent outside
the application boundary (like an EO). The movement outside the
application boundary is important in OO applications because objects
communicate with each other. Only when an object actually sends
something outside the boundary is it considered an external inquiry.

It is common in the GUI and OO environments for an EO
to have an input side. The only distinguishing factor is that
an EQ cannot contain derived data. This characteristic
distinguishes an EQ from an EO.

The external inquiry ranking is defined in Table 6-11. The
total number of UFPs attributable to external inquiries is
obtained from Table 6-6 by ranking the EQs, adjusting the
total of each ranked group by the EQ weighting factors,
and accumulating the EQ subtotal as in Table 6-8 for the
ILFs.

6.7.2.7 Transforms
TFs involve a series of mathematical calculations that change input data into
output data. The fundamental nature of the data can also be changed as a
result of the transformation. New data can be created by the transform. In
simple terms, large computational elements are counted by transform FPs in
scientific and engineering applications.

Calculations in the real world are often constrained by conditions in the
problem domain. These conditions may constrain the possible values
assumed by the input data or directly constrain the calculation process itself.
These conditions take the form of preconditions, invariants, and post
conditions attached to the transforms. Alan Davis,37

37 Davis, A. Software Requirements Analysis and Specification. Prentice-Hall, Inc.
Englewood Cliffs, N.J.: 1990.

 requirements
management and software development researcher and professor, referred to
the conditions as semantic statements. The size of the transformation is

Table 6-10: Ranking for External Outputs

 1-5 DETs 6-19 DETs 20+ DETs

0-1 FTRs Low Low Average

2-3 FTRs Low Low High

4+ FTRs Average High High

Table 6-11: Ranking for External Inquiries

 1-19 DETs 20-50
DETs 51+ DETs

1 FTR Low Low Average

2-5 FTRs Low Low High

6+ FTRs Average High High

70

determined by the number of processing steps in the mathematic language of
the problem domain.

TFs are ranked according to the number of processing steps contained in the
TF and the number of semantic statements controlling them.

An example of a TF is the set of calculations required to convert satellite
position data into velocity and direction data. The processing steps are:

1. Calculate the change in longitude: 12 xxx −=∆

2. Calculate the change in latitude: 12 yyy −=∆

3. Calculate the direction of travel:
y
x

∆
∆

= −1tanα

4. Calculate the change in altitude: 12 zzz −=∆

5. Calculate the distance in 2 dimensions: 22
2 yxd ∆+∆=

6. Calculate the distance in 3 dimensions: 22
23 zdd ∆+=

7. Calculate the elapsed time: stopstarte ttt −=

8. Calculate the satellite velocity: etds /3=

The satellite data transformation is subject to two preconditions:

1. Latitude change: 0>∆y and

2. Elapsed time 0>et .

The resulting TF rating is based on 8 processing steps and 2 semantic
statements.

The mathematical TF must not be confused with an
algorithm. An algorithm is a means of embedding a
transform in an application, but can be used in other ways.
Algorithms are a means of implementing decision processes.
TFs always involve mathematics. Another way of looking at
the difference between algorithms and transforms is
algorithms are described in terms of steps and decisions; a
transform is always described in terms of calculations.

The transform ranking is defined in Table 6-12. The total
number of UFPs attributable to transforms is obtained from
Table 6-6 by ranking the TFs, adjusting the total of each
ranked group by the TF weighting factors, and accumulating
the TF subtotal as in Table 6-8 for the ILFs.

6.7.2.8 Transitions
TRs are generated by external events to which the application must respond.
The transition represents the event-response pair in the application model. In
other words, the transitions represent the behavior model and the control
dimension of the application.

The data dimension (files, inputs, outputs and inquiries) describes the
structure of any given state and the domains from which the behavior is
specified, but cannot describe the behavior of the application. This

Table 6-12: Ranking for Transforms

 1-5 SSs 6-10 SSs 11+ SSs

1-10 PSs Low Low Average

11-20 PSs Low Low High

21+ PSs Average High High

71

dimension is the domain for all 3D FP elements except for the TR
component type.

Events and responses are characteristics of the problem domain and are a
dominant part of the system (application) requirements. TRs are driven by
the system requirements. A requirements statement such as “When the
target is within 30 yards, the system shall...” defines a state TR.

A sample state-transition diagram is shown in Figure 6-10. There are four
distinct states and five unique transitions between states as seem in Figure
6-10. Each transition contains an event that triggers the transition and a set
of responses activated by the event. The responses can be sequential or
concurrent. Multiple events triggering the same response set are
considered to be a single unique transition.

The transition ranking is defined in Table 6-6. The total number of UFPs
attributable to transitions is obtained by multiplying the number of unique
transitions by 3 (conversion of transitions to UFPs).

6.7.3 Unadjusted function point counting
The number of instances of a component type
for each rank is entered into the appropriate
cell in Table 6-13. Each count is multiplied
by the weighting factor given to determine the
weighted value. The weighted values in each
of the component rows are summed in the
Total column. The component totals are then
summed to arrive at the total UFP count.

Remember, the UFP count arrived at in Table
6-13 relates to the total functional size of an
average software system with the
requirements and structure defined by the FP
count. There have been no adjustments for
the system type or processing requirements.
In a real sense, we cannot distinguish between
a data processing system and a real-time
avionics system. We cannot discern the
difference between a system with a strong
user interface requirement and a space payload. What we do know is the
system contains a certain average amount of functionality. We have
measured only the total system size. The UFP number tells us nothing about
the development or the operational environment.

6.7.4 Adjusted function points
AFPs account for variations in software size related to atypical performance
requirements and/or the operating environment. It is likely that the software
system you are measuring will be larger than average when there are
requirements for reusability or user support. Consequently, there must be a
corresponding adjustment to the total size projection to deal with this type of
issue. Predicting total size from a SLOC point of view automatically adjusts
the size to deal with atypical conditions. Atypical conditions are not
accounted for in the UFP frame of reference. Hence, there is a necessity to
adjust the UFP count to compensate for these non-average requirements.

There is a trend in modern software estimating tools to ignore the size
adjustment in producing the software development cost and schedule

IDLE

State 2

State 3 State 4

Event 1
Response

Event 2
Response

Figure 6-10: State transition model

Table 6-13: Unadjusted function point calculation

Component Types
 Ranking

Total
Low Average High

Internal Logical File __ x 7 = __ x10 = __ x15 =

External Interface File __ x 5 =_ __ x 7 = __ x10 =

External Input __ x 3 =_ __ x 4 = __ x 6 =

External Output __ x 4 =_ __ x5 = __ x 7 =

External Inquiry __ x 3 =_ __ x 4 = __ x 6 =

Transform __ x7 =_ __ x10 = __ x15 =

Transition __ x 3 =

Unadjusted Function Points

72

estimate. The component-level estimating model (Appendix G) contains a
set of factors that adjust the cost and schedule estimate to account for
development environment variations with atypical requirements and
constraints. The primary argument against adjusting the FP size projections
is that the cost and schedule impacts are already dealt with in the effort
adjustments. Herein lies the faulty assumption: Adjustments are required in
both size and effort. More code (software) is necessary to implement user
support features and more effort is required to design and test those features.

6.7.4.1 Value Adjustment Factor

The VAF is the mechanism used by the FP methodology to adjust software
size projections for special requirements placed upon the software. The
adjustment is based on a series of general system characteristics
(GSCs) that determine an overall VAF. Combining the UFP total and
the VAF produces the AFP value for the system. There are 14 GSCs
defined in Table 6-14 that rate the general functionality of the system
and produce the software size projection. The 14 GSCs can be
evaluated early in the software development cycle since they are
generally part of the software requirements.

The impact (degree of influence) of each of the system characteristics
is rated on a scale of 0 to 5 in response to the question in the general
characteristic description. The detailed definition of each
characteristic is based on the IFPUG 4.2 guidelines. The ratings are
classified according to the information in Table 6-15.

Table 6-14: General System Characteristics definitions

No. General
Characteristic Description

1 Data communications How many communication facilities are there to aid in the transfer or exchange of
information with the application or system?

2 Distributed data
processing

How are distributed data and processing functions handled?

3 Performance Did the user require response time or throughput?

4 Heavily used configuration How heavily used is the current hardware platform where the application will be
executed?

5 Transaction rate How frequently are transactions executed daily, weekly, monthly, etc.?

6 Online data entry What percentage of the information is entered online?

7 End-user efficiency Was the application designed for end-user efficiency?

8 Online update How many internal logical files are updated by online transactions?

9 Complex processing Does the application have extensive logical or mathematical processing?

10 Reusability Was the application developed to meet one or many user’s needs?

11 Installation ease How difficult is conversion and installation?

12 Operational ease How effective and/or automated are start-up, backup, and recovery procedures?

13 Multiple sites Was the application specifically designed, developed, and supported to be installed
at multiple sites for multiple organizations?

14 Facilitate change Was the application specifically designed, developed, and supported to facilitate
change?

Table 6-15: General System Characteristic ratings

Rating Definition (relative impact)

0 Not present, or no influence

1 Incidental influence

2 Moderate influence

3 Average influence

4 Significant influence

5 Strong influence throughout

73

To demonstrate use of the rating scheme, we have selected the
Online Data Entry (GSC 6) characteristic. The corresponding
GSC 6 ratings are shown in Table 6-16.

GSC items such as transaction rates, end user efficiency, on-
line update and reusability have higher values for user friendly
(GUI) systems than for traditional systems. Conversely,
performance, heavily used configurations, and multiple site
installations have lower GSC values for user friendly systems
than for traditional systems.

Once the 14 GSCs have been evaluated, the value adjustment
factor can be computed using the following IFPUG VAF
equation:

+= ∑

=
100/65.0

14

1i
iGSCVAF (6-15)

where GSCi = degree of influence for each General System Characteristic
and
i = 1 to 14 representing each GSC.

The resulting GSC score is between 0.65 and 1.35 depending on the sum of
the individual ratings.

6.7.4.2 Adjusted function point calculation
The AFP count is obtained by multiplying the VAF by the UFP count. The
standard AFP count is given by:

UFPVAFAFP ×= (6-16)

where AFP = Adjusted Function Point count,
 VAF = Value Adjustment Factor, and

UFP = Unadjusted Function Point count.

6.7.5 Backfiring
The vast majority of widely used software estimating tools are based on
SLOC for predicting development effort and schedule. Function points,
albeit a viable total software size estimating approach, are not directly
compatible with the algorithms used by these tools. Note that some of these
tools do allow the input of function points as a size measure, but internally
convert function points to SLOC before the cost and schedule are estimated.
Research into conversion factors between function points and SLOC have
been conducted by several researchers, the most comprehensive of these
studies was published by Capers Jones38

38 Jones, Capers. Applied Software Measurement. McGraw-Hill Inc. New York, NY:
1991.

 in 1991. Table 6-17 contains a
commonly used subset of the language conversions listed by Capers Jones.
The SLOC/FP and range data listed here is a compendium of the data
published by the various researchers. The table listing correlates well with
the Capers Jones data.

Table 6-16: Online Data Entry rating definitions

Rating Definition

0 All transactions are processed in batch mode

1 1% to 7% of transactions are interactive data entry.

2 8% to 15% of transactions are interactive data entry

3 16% to 23% of transactions are interactive data
entry

4 24% to 30% of transactions are interactive data
entry

5 More than 30% of transactions are interactive data
entry

74

The data in the table illustrates the relative efficiencies of modern
programming languages. For example, the ratio of macro assembler to C++
is 213/55 = 3.87 showing the size advantage of C++ over assembler is nearly
4:1. The ratio suggests a large cost advantage in the use of high-level
languages.

Please note the wide range for each of the SLOC/FP ratios in the table.
Using the backfiring techniques to obtain equivalent source code size values
will not yield precise SLOC counts. Also remember the backfiring
process does not produce the “effective” source code size used in cost
and schedule estimates. The backfire process produces a total functional
size estimate that assumes no software reuse or COTS use.

The conversion of function points (UFP or AFP) to equivalent total SLOC is
accomplished with the equation:

BFAFPSt ×= (6-17)

where St = total software SLOC count,
AFP = Adjusted Function Point count, and

 BF = SLOC/FP conversion factor from Table 6-17.

The AFP value yields the most rational conversion to source lines of code.

6.7.6 Function points and objects
3D FP sizing (introduced in Section 6.7.2) and object sizing are essentially
identical technologies. At a high level, applications and objects have the
same FP component properties. Applications have internal data, contain
mathematical transforms, and have externally observable behavior.
Applications are made from lower-level objects that can be either concurrent
or contained within other objects. To understand this concept, we must map
the FP components to the features of a class.

To perform the mapping, establish the boundary of the class as you would a
FP application. Anything that crosses the object (class) boundary is an input,

Table 6-17: FP to SLOC conversion

Language SLOC/FP Range Language SLOC/FP Range

Ada 95 49 40-71 JOVIAL 107 70-165

Assembler, Basic 320 237-575 Object-oriented 29 13-40

Assembler, Macro 213 170-295 Pascal 91 91-160

BASIC, ANSI 32 24-32 PL/I 80 65-95

C 128 60-225 PROLOG 64 35-90

C++ 55 29-140 CMS-2 107 70-135

COBOL (ANSI 95) 91 91-175 3rd generation 80 45-125

FORTRAN 95 71 65-150 4th generation 20 10-30

HTML 3.0 15 10-35 Visual Basic 6 32 20-37

JAVA 53 46-80 Visual C++ 34 24-40

75

output, or inquiry. A message that passes information into the object and
triggers a state change is an input. A message that is produced by the class is
an output. A message that causes the object to return information about its
state without causing the object to change state is an inquiry.

The object’s static internal structure describes the properties of the object
and represents the possible states the object can assume. Grady Booch,39

Objects can contain mathematical transformations. Not all objects contain
TFs. Some are purely algorithmic in nature. The objects that do contain
mathematical TFs are identified as transformers or converters.

software designer and methodologist, says, “The state of an object
encompasses all of the properties of the object plus the current values of
each of the properties.” The structure of the object’s state space is its
internal data structure. As a minimum, an object contains at least one record
type, that of the state representation. The properties of the state are the
record data element types.

Objects generally exhibit an external behavior. The way an object reacts to
an external event (message) is dependent upon the contents of the message
and the current state of the object. All objects exhibit some sort of behavior.
The transitions of the behavior model are the transitions in the FP domain.

3D FPs can be applied directly in OO software where the boundary is drawn
around the application level. At this level, 3D FPs measure the function
delivered, not necessarily the functionality developed.

6.7.7 Zero function point problem
A new development can be specified using a FP approach and/or a SLOC-
based approach. We can also specify the size of new functionality within an
existing system in terms of FPs, but we most often use SLOC to measure
modification of existing functionality. When the estimate is for extension of
an existing system, the size specification generally becomes more complex.
Care must be taken to ensure that the portions specified using FPs do not
overlap the portion expressed in SLOC and that the system development is
completely covered by the composite of the two approaches.

The major issue with using FPs in this situation is called “the zero function
point problem.” When using the FP sizing approach, an issue arises when a
portion of the software is being modified without adding to or changing the
system functionality. The FP concept allows for specification of the total
system development size only. The size of added system functionality is
only a problem of defining the application boundary for the development.
FPs do not attempt to represent development effort; thus, there is no
mechanism for dealing with modifications, deletion, regression testing, and
reverse-engineering effort.

The zero FP issue can only be dealt with through the effective SLOC. The
effective size can be specified as:

SAFSSSS reusedFPeff ++= mod (6-18)

where SFP is the adjusted FP count converted to SLOC through the
backfiring technique and

SAF is the Size Adjustment Factor defined in Equation (6-4).

39 Booch, G. Object-Oriented Analysis and Design With Applications, Second
Edition. Benjamin-Cummings, 1994.

76

In the SLOC coordinate system, the development effort for the modifications
and reused software can be computed. This approach requires the FP
approach be limited to the new development size projection and the SLOC-
based approach be used for modification and reuse portions of the software
product.

77

Section 7
Productivity Factor Evaluation

7.1 Introduction
The system-level estimating process, considered a first-order model,
introduced in Section 4 is the simplest of the software estimating models.
The model consists of a productivity factor (PF) multiplied by the software
product effective size to obtain the development effort. The production units
(size) can be effective source lines of code (ESLOC), function points, object
points, use cases, and a host of other units as long as the PF units match the
production units. The development effort can be a person-hour (PH),
person-month (PM), or any other unit corresponding to the unit measure of
the PF. For the purpose of this introductory discussion, we will use effective
source lines of code (ESLOC) as the production unit measure and PH per
effective source line of code as the productivity measure. This can be stated
as:

ekd SCE = (7-1)

where dE is the development effort in PH,

 kC is a productivity factor (PH/ESLOC), and

 eS is the number of ESLOC.

The PF is commonly determined by the product type, historic developer
capability, or both, derived from past development projects. As simple as
this equation is, it is widely used to produce high-level, rough estimates.

As an example, the development effort for a military space payload with Se =
72 KESLOC, and a PF of 55 lines per person-month (ESLOC/PM). Note
that a month is assumed to be 152 hours by most estimating tools. The hours
per ESLOC value is simply:

PF = 55 ESLOC/PM * (PM/152 PH)
 = 0.362 ESLOC/PH
 = 2.76 PH/ESLOC

Ed = 2.76 PH/ESLOC * 72000 ESLOC
 = 198,720 PH

198,720 PH * PM/152 PH = 1,307 PM

or

 ÷=

PM
ESLOC

PM
PH

ESLOC
PH 5515276.2 (7-2)

The development effort for this project is then 198,720 PH or 1,307 PM.

The utility of the first-order model is that it can be used early in the
development process (typically before Milestone A) before the software
system architecture is established and the software components defined. The
model is also valuable where there is little or no knowledge available of the
developer or the developer’s environment. The first-order model assumes a

There is no single development, in either
technology or management technique,
which by itself promises even one order-of-
magnitude improvement within a decade in
productivity, in reliability, in simplicity.

Frederick P. Brooks, Jr.

78

generic, or average, software development organization and no special
constraints on the software product. A reasonable ballpark estimate can be
created quickly to support rough cost planning.

The Ck value depends on the product type. The product type is generally
obtained from historical data or from productivity tables. Product types are
divided into 13 categories in the guidebook productivity tables to provide
meaningful PFs for these types of systems. The product characteristics for
each class are typical for the product category. Additional system types can
be covered by selecting the closest approximation to the given product type.

One weakness of the first-order model is its insensitivity to the magnitude of
the effective product size. Productivity is, or at least should be, decreased
for larger projects. The tables included in this section partially compensate
for the system size issue. Interpolation between specific size values in the
tables refines the PF values.

Once a reasonable PF value has been selected from the table, it is a simple
matter to multiply the PF by the estimated effective size to obtain a total cost
or effort estimate for the project. The tables in this section assume an
average development organization operating in a normal environment.
Subjective adjustments can be made to the factors to compensate for
application experience (and so forth) if supported by historic project data.

7.2 Determining productivity factor
Typically, for estimating purposes, a PF is chosen based on historical data
from similar past development efforts. The historic factor is calculated by
dividing the total development effort (in PM) by the total effective size of
the software, in ESLOC or thousand source lines of code (KESLOC), to
obtain the PF (PM/ESLOC). Inverting the PF yields the familiar
ESLOC/PM productivity metric. It is worth stressing that these productivity
values include all software development activities from design through
software component integration.

By collecting several data points from a development organization for a
specific product type, an average PF can be computed that will be superior to
the factors tabulated in this section. Collecting several data points of
different project sizes will produce a size-sensitive productivity relationship.
Table 7-1 shows some typical productivity values for various software
application types.

The productivity figures in Table 7-1 can be converted from effective source
lines per person month to person months per thousand lines (KESLOC) to
satisfy the first-order model calculations in Equation (7-1). The results of
the conversion are contained in Table 7-2 repeated here for convenience. A
similar table extracted from the QSM database by McConnell is contained in
McConnell’s Software Estimation40

40 McConnell, S. Software Estimation. Microsoft Press Redmond, WA: 2006.

.

79

Table 7-2: Typical productivity factors (PM/ KESLOC) by size and software type

Software Type D 10
KESLOC

20
KESLOC

50
KESLOC

100
KESLOC

250
KESLOC

Avionics 8 12.6 14.5 17.4 20.0 24.0

Business 15 2.1 2.4 2.9 3.3 4.0

Command and Control 10 6.3 7.2 8.7 10.0 12.0

Embedded 8 9.0 10.4 12.4 14.3 17.2

Internet (public) 12 2.1 2.4 2.9 3.3 4.0

Internet (internal) 15 1.1 1.2 1.5 1.7 2.0

Microcode 4-8 12.6 14.5 17.4 20.0 24.0

Process Control 12 4.2 4.8 5.8 6.7 8.0

Real-time 8 12.6 14.5 17.4 20.0 24.0

Scientific Systems/
Engineering Research 12 2.5 2.9 3.5 4.0 4.8

Shrink-wrapped/ Packaged 12-15 2.1 2.4 2.9 3.3 4.0

Systems/ Drivers 10 6.3 7.2 8.7 10.0 12.0

Telecommunication 10 6.3 7.2 8.7 10.0 12.0

Table 7-1: Typical productivity factors (ESLOC/PM) by size and software type
and stated complexity (D) value

Software Type D 10
KESLOC

20
KESLOC

50
KESLOC

100
KESLOC

250
KESLOC

Avionics 8 79 69 57 50 42

Business 15 475 414 345 300 250

Command and Control 10 158 138 115 100 83

Embedded 8 111 97 80 70 58

Internet (public) 12 475 414 345 300 250

Internet (internal) 15 951 828 689 600 500

Microcode 4-8 79 69 57 50 42

Process Control 12 238 207 172 150 125

Real-time 8 79 69 57 50 42

Scientific Systems/
Engineering Research 12 396 345 287 250 208

Shrink wrapped/
Packaged

12-
15

475 414 345 300 250

Systems/ Drivers 10 158 138 115 100 83

Telecommunication 10 158 138 115 100 83

Source: Adapted and extended from McConnell, Software Estimation, 2006, Putnam and Meyers, Measures for
Excellence, 1992, Putnam and Meyers, Industrial Strength Software, 1997 and Putnam and Meyers, Five Core.

80

7.2.1 ESC metrics
The USAF Electronic Systems Center (ESC) compiled a database41

The ESC categorization follows the reliability definitions posed by Boehm in
Software Engineering Economics; that is, grouping according to the
following reliability categories

 of
military projects developed during the years 1970-1993 containing 29
development projects. The projects included development data from 91
Computer Software Configuration Items (CSCIs) divided into three
categories based on software reliability requirements. The projects and
CSCIs are not grouped in the same way as the Software Type categories in
Tables 7-1 and 7-2. Care should be taken when using the ESC data outside
the domains represented in the ESC database.

42

:

Very low The effect of a software failure is simply the
inconvenience incumbent on the developers to fix the
fault. Typical examples are a demonstration prototype of a
voice typewriter or an early feasibility-phase software
simulation model.

Low The effect of a software failure is a low level, easily
recoverable loss to users. Typical examples are a long-
range planning model or a climate forecasting model.

Nominal The effect of a software failure is a moderate loss to users,
but a situation from which one can recover without
extreme penalty. Typical examples are management
information systems or inventory control systems.

High The effect of a software failure can be a major financial
loss or a massive human inconvenience. Typical examples
are banking systems and electric power distribution
systems.

Very high The effect of a software failure can be the loss of human
life. Examples are military command and control systems,
avionics, or nuclear reactor control systems.

Each project contains CSCIs with different ratings. Each CSCI within a
project is required to interface with one or more additional CSCIs as part of a
composite system. The interaction includes both internal interfaces as well
as interfaces to external systems. The number of integrating CSCIs is
defined as the total number of CSCIs in the project. ESC formed three
categories based on the number of integrating CSCIs and the required
reliability level for their productivity analysis, as shown in Table 7-3.

41 AFMC Electronic Systems Center. “Cost Analysis: Software Factors and
Estimating Relationships.” ESCP 173-2B. Hanscom AFB, MA: 1994.
42 Boehm. B.W. Software Engineering Economics.

81

Productivity and the associated factors for the three project categories are
consistent with the information in the PF tables. An interesting note on the
ESC productivity analysis shown in Table 7-4 is the narrow range of the
productivity data for each category. Standard deviations for the three
categories—even ignoring the project size and development environment—
are very low.

The 91 CSCIs contained in the ESC data, analyzed in terms of development
personnel, show the impact of development capability on productivity. The
results of the productivity analysis are shown in Table 7-5. The results do
not exactly match those given in Table 7-4 because the project categories
contain a mix of CSCI categories; that is, a Category 3 project may contain
Category 1, 2, and 3 CSCIs. In any case, the productivity variation across
the personnel capability range is significant and should be considered when
selecting a PF for an estimate. Note the information contained in Tables 7-1
and 7-2 include personnel of all capability levels.

Table 7-4: Productivity for military applications by category

Project Type
Productivity
(ESLOC/PM)

Productivity
Factor

(PM/KESLOC)

Productivity
Range

(ESLOC/PM)

Standard
Deviation

(ESLOC/PM)

All programs 131.7 7.60

Category 1 195.7 5.10 116.9 – 260.8 49

Category 2 123.8 8.08 88 – 165.6 23.6

Category 3 69.1 14.47 40.6 – 95.2 16.5

Table 7-5: Productivity for military applications by category as a function
of personnel capability

Personnel
Category 1

(ESLOC/PM)
Category 2

(ESLOC/PM)
Category 3

(ESLOC/PM)

Above average 265.2 165.5 91.0

Average 177.9 141.6 45.4

Below average No data 101.2 41.5

Total 216.1 134.3 53.9

Table 7-3: Definition of complexity/reliability categories

 Integrating CSCIs

Reliability 0- 6
CSCIs

7-10
CSCIs

> 10
CSCIs

Very high
(Public safety required)

Category 2 Category 3 Category 3

High
(Major financial loss)

Category 2 Category 2 Category 3

Very low - Nominal
(Moderate loss)

Category 1 Category 1 No Data

82

7.2.2 Productivity index
The Quantitative Software Management (QSM) Software Lifecycle Model
(SLIM®) introduced in Section 4 is the prime example of use of a PF and of
a second-order estimating model. The general form of the SLIM® software
equation is:

3/43 TKCS ke = (7-3)

where K = the total life cycle cost (person-years),

kC = a PF relating cost and schedule to the effective size, and

 T = the full-scale development schedule (years)

A second commonly used measure of developer capability is the Putnam
Productivity Index (PI)43,44

kC

 implemented in the SLIM® Estimating Suite.
The Putnam software equation defined in Equation (7-3) uses a software PF

 to equate the development cost and schedule to the effective software
size. The Putnam PF is conceptually equivalent to the effective technology
constant defined in Table 7-6. The SLIM®

kC range is from approximately
750 to 3,500,000. To simplify the use of the PF a new variable known as the
PI was created. The PF range, indicated as PI, is from 0 to 40. The
relationship between kC and PI is approximately:

 PI
kC)272.1(7.600≅ (7-4)

The relationship between the productivity index and the PF can easily be
visualized from the data in Table 7-6.

The PI value contains the impacts of product characteristics and the
development environment, as well as the domain experience and capability
rating for the organization much like the effective technology constant
discussed in Section 5.4.5. PI also subsumes the application complexity
impact and the effects of software reuse; that is, the impacts of reverse
engineering and regression testing are contained in the PI value.

Since the PI value is conceptually closer to the effective technology
constant, the typical range of PI values must be specified for each domain
or application type, as shown in Table 7-7. Note that a positive PI change
of three points represents a doubling of the process productivity.

The PF Ck is approximately double the effective technology constant
(Section 5.4.5) Cte value for realistic Ck values. The estimating model in
Section 5 includes the effects of development environment on the
development effort (see Equation [5-1]). Assuming a product environment
penalty of 2 units (that is, 2=∏

i
if), the basic technology constant tbC

defined in Section 5.4.4 is roughly equal to kC . The practical upper basic
technology constant limit of 20,000 places PI values of 13 or greater at risk
in terms of achievable productivity. For example, a software development of
50,000 source lines with a PI value of 14 yields a predicted full-scale
development productivity of 750 lines per person month.

43 Putnam, L.H., and W. Myers. Measures of Excellence. Prentice-Hall, Inc.
Englewood Cliffs, NJ: 1992.
44 Putnam, L.H., and W. Myers. Five Core Metrics. Dorset House Publishing. New
York, NY: 2003.

Table 7-6: Relationship between

kC and PI values

PI kC PI kC

1 754 11 8,362

2 987 12 10,946

3 1,220 13 13,530

4 1,597 14 17,711

5 1,974 15 21,892

6 2,584 16 28,657

7 3,194 17 35,422

8 4,181 18 46,368

9 5,186 19 57,314

10 6,765 20 75,025

83

Productivity index data corresponding to the PI values in
Table 7-7 are strongly skewed toward the Low PI value. For
example, projects in the business domain typically have a
productivity value on the order of 300-400 lines per PM. The
Low PI value corresponds to a productivity of about 400 lines
per month. The High PI value corresponds to a productivity
of approximately 6,500 lines per month. Extrapolating, a
50,000 source line project could be completed in only 8 PM,
according to Table 7-7.

There is an important qualifier for the upper reaches of the
Putnam productivity index that is important. Most software
development projects consist of CSCIs of 30,000 ESLOC or
more. A small project ranges from 5,000 to 15,000 effective
source lines; the achievable productivity can reach significant
values that cannot be attained in larger projects. In this special
case, PI values of 11 or 12 are reasonable. The reason for this
extension is the small size of the development team that can
work closely to produce the product. Products with significant
performance requirements are not likely to reach these values.

The productivity rates presented in Table 7-1 are typical for common project
types. A complexity (D) value column was added to the table to show the
relationship between the software type and complexity. Complexity is
defined and discussed in Section 10.1. It is interesting to note the
productivity rate achieved for each of the software types tends to group
around the associated complexity value. Less complex product types (higher
D value) have higher productivity for each project size group.

The project size category also tells us about the size and character of the
project team. A 10 KESLOC project will likely be developed by a small
team, probably a total of 10 or fewer members (including test and integration
personnel). The system defined by the project will only consist of one or
two CSCIs. The development team (programmers, integrators) will be about
five people in a normal environment. Projects of this size are at the lower
limits of the data defining the widely used software cost estimating tools.
Productivity is very high because of the ability of the development team to
communicate and work together.

7.3 System-level estimating
System-level cost estimates, using either the PF model or the ESC model,
can quickly produce credible ballpark estimates. Note: quickly does not
equate to simply. The key to system-level estimating is the realism of the
effective size projection, which is not always a simple task. Take the
following as an example:

Given an avionic system upgrade consisting of a 1,000 ESLOC
modification and an 834 function point (adjusted) addition. The
implementing programming language is C++. The avionic system
required reliability is at the “loss of human life” level. The required
effort for the upgrade using Equation (7-1) will be:

2.678)834*55000,1(*47.14 =+=dE PM (7-5)

according to the ESC model tabulated in Table 7-4. The 46,870
effective size is close to the 50,000 source line column in Table 7-2.
The avionics system PF of 11.76 for the extended McConnell approach

Table 7-7: Typical PI ranges for major application types
from the QSM database

Domain Low PI High PI

Business 12 21

Scientific 10 20.5

System 4 15

Process control 10 17.5

Telecommunications 8 14

Command and Control 7.5 14

Real time 5 13

Avionics 3.5 14.5

Microcode 3.2 9.2

84

yields an effort of 551.2 PM, which is lower than (but reasonably close
to) the ESC model results.

There are NO useful methods to project a development schedule at the
system level unless the system can be developed as a single CSCI. If the
system can be built as a single CSCI, the schedule can be approximated by
an equation of the form:

3*5.3 dd ET ≅ months (7-6)

where Td is the development time (months), and

 Ed is the development effort (PM).

Remember, the results are only as accurate as the estimating model which, in
turn, is only as accurate as the underlying data. The estimates are totally
independent of the development environment since we have no knowledge
of the product characteristics or of the developer contracted to build the
system. We are also working with an estimated size which may (probably
will) grow between this estimate and the final product.

85

Section 8
Evaluating Developer Capability

One of the most important steps in developing a software cost and/or
schedule estimate is the establishment of the software developer’s capability
rating. The value of this rating changes slowly over time, if it changes at all.
There are two primary variables in the capability rating: (1) the capability of
the analysts and programmers, and (2) the level of experience in the
application domain of the project being estimated.

The first variable that has the greatest impact and changes very slowly is the
capability of the analysts and programmers, while the second variable,
domain experience, is more likely to change over time and defines the
organization’s principle product lines.

The developer, in the context of this guidebook, is the development
organization, which is made up of analysts (software engineers),
programmers, and managers. The developer resides in physical facilities and
uses development resources that relate to the developer’s normal way of
doing business. The developer’s normal way of doing business can be
visualized as the developer’s culture. Culture implies a level of usage that
transcends experience, or the developer would not think of using any other
tool or practice.

When evaluating an estimate, the first question one asks is “What
productivity is this organization capable of achieving?” The developer
capability rating defines organization productivity without the load imposed
by the project or product constraints.

8.1 Importance of developer capability
Developer capability measures the efficiency and quality of the development
process and is one of the two most significant cost and schedule drivers. The
second and most important driver is the effective size of the system
described in Section 6.

The system-level estimating model described in Section 4 contains a
constant productivity factor kC (person hours per equivalent source line of
code) that assumes an average capability and organization efficiency as well
as an environment and product characteristics consistent with the application
type. The only way we can include organization efficiency is by deriving the
productivity factor from historic data collected for a specific organization
and product type.

The component-level estimating model extends the productivity factor to
include the impacts of the developer and development environment on
organization efficiency. This model provides the only mechanism to account
for the significant cost drivers: people, environment and product type.

The inherent developer capability is the most significant factor that
determines an organization’s productivity. The major attributes of a
developer capability rating are:

• Problem solving or engineering ability
• Efficiency and thoroughness

What we can or cannot do, what we
consider possible or impossible, is rarely a
function of our true capability. It is more
likely a function of our beliefs about who
we are.

Tony Robbins

86

• Ability to communicate and cooperate

8.2 Basic technology constant
There are a total of about 35 characteristics that are useful in determining the
impact of the product and the development environment on the ultimate
project development cost and schedule. The 35 characteristics essentially
define the productivity factor. Six of those characteristics are useful in
quantitatively determining the “raw” capability of a software development
organization. The characteristics are:

• Analyst, or software engineer, capability (ACAP)
• Programmer, or coder, capability (PCAP)
• Application experience (AEXP)
• Use of modern practices (MODP)
• Use of modern development tools (TOOL)
• Hardcopy turnaround time (TURN)

The term raw capability isolates the undiluted developer performance from
the effects of the product and the environment that reduces the overall
project productivity. For example, separating the development team across
multiple development sites reduces productivity due to communication
difficulties across the sites. The basic technology measure eliminates the
degradation by focusing on an ideal set of project conditions.

The basic technology constant (Ctb) is a measure of
organizational capability in a specific application area.
The measure was first implemented in the Seer estimating
model in the late 1970s. Since that time, the measure has
achieved widespread acceptance and is used in several
software estimating tools. An organization’s basic
technology constant is relatively stable (steady) over time,
making it useful as an organization capability measure.
The constant is domain (product)-specific.

The range of values for the measure is from 2,000 to
20,000, as shown in Figure 8-1. An organization with the
2,000 rating is incompetent, unmotivated, has a Capability
Maturity Model Integration (CMMI) Level 1 process
rating, uses software development tools from the 1960s,
and operates on a remote computing system. The
organization has no interactive communication capability.
This is a true “Dark Age” development organization. As
bleak as Dark Age sounds, there are still organizations
with basic technology ratings in the low 2,200s.

The high end of the Ctb range is a “projected” value of 20,000. Such an
organization would be highly motivated and working in a team environment
with free, direct communication between team members. The organization
would be a CMMI Level 5 entity; that is, one that is fully involved with the
principles and philosophy of continuous process improvement. The
organization would use modern management and development tools and
practices as a matter of culture. Computing resources are instantaneous and
within easy reach.

The typical basic technology constant range today is between 5,500 and
7,500 as shown in Figure 8-2. There are a few organizations with basic

Figure 8-1: Basic technology constant range

Primitive Moderate Average Good Advanced

20,000
18,000
16,000
14,000

12,000

10,000

8,000

6,000

4,000

2,000

B
as

ic
 T

ec
hn

ol
og

y
C

on
st

an
t

Capability

5500

7500

Resource
Availability

Primitive Moderate Average Good Advanced

20,000
18,000
16,000
14,000

12,000

10,000

8,000

6,000

4,000

2,000

20,000
18,000
16,000
14,000

12,000

10,000

8,000

6,000

4,000

2,000

B
as

ic
 T

ec
hn

ol
og

y
C

on
st

an
t

Capability

5500

7500

Resource
Availability

87

technology ratings in the 8,000 to 9,000 range. The
significance of the ratings above 8,000 is these organizations
are led by managers who practice Theory Y management45.
The highest data point was achieved in a variation of the Skunk
Works©46

The mean value of the basic technology constant distribution
has changed little over the last 25 years, in spite of dramatic
changes to the software development technology. From a
productivity point of view, the shift of less than 15 points per
year is discouraging as can be seen in Figure 8-2. From an
estimating point of view, this is good because the project data
that underlies almost all software estimating tools is still current and the
tools are stable. An important observation is “culture is constant.”
Estimating templates created for organizations 20 years ago are generally as
valid today as they were then.

 environment (detailed in Section 8.3.3.1).

Another indication of developer capability stability is
shown in Figure 8-3. Productivity data from the 1960s
through the 1990s indicates a slow but steady growth in
productivity of about 1 line per PM per year for
Department of Defense (DoD) projects, in spite of the
introduction of several major language and technology
changes. Each technology listed in Figure 8-3 was
introduced with the promise that productivity would
increase an order of magnitude and errors would
disappear. Some improvements were expected because
technology improvements do have a positive effect on
productivity.

Since the basic technology constant is relatively stable
over a long period of time, it is useful to build a library of
technology-constant data for each organization as developing estimates. The
process simplifies estimating because the parameters in the basic technology
constant are the most difficult to obtain without some calibration using
completed projects. The parameter values in the basic constant can be
validated through post-mortem analysis to increase confidence in the data.

8.2.1 Basic technology constant parameters

8.2.1.1 Analyst capability
The major attributes of the analyst capability rating are:

• Analysis or engineering ability
• Efficiency and thoroughness
• Ability to communicate and cooperate

These attributes are of roughly equal value in the evaluation. The evaluation
should not consider the level of domain experience of the analysts. The
experience effects are covered by other factors. The evaluation should be
based on the capability of the analysts as a team rather than as individuals.
The capability rating can be outlined as:

45 Hersey, P., and K.H. Blanchard. Management of Organizational Behavior,
Utilizing Human Resources. Prentice-Hall, Inc. Englewood Cliffs, NJ: 1977.

46 © 2005, Lockheed Martin Corporation

Figure 8-2: Basic technology constant distribution 2005

62005500 6500

Basic Technology Constant

9000

20051980

62005500 6500

Basic Technology Constant

9000

20051980

Figure 8-3: Productivity gains from 1960 to present

1960 1970 1980 1990

100
90
80
70
60
50

OOD

Structured Analysis
Structured Design Process Maturity

PWB
Structured Programming

3rd Generation Languages

Ada
P
R
O
D
U
C
T
I
V
I
T
Y

LPPM Year
1960 1970 1980 1990

100
90
80
70
60
50

OOD

Structured Analysis
Structured Design Process Maturity

PWB
Structured Programming

3rd Generation Languages

Ada
P
R
O
D
U
C
T
I
V
I
T
Y

 Year

88

• Motivation
• Use of team methods

o Communication ability
o Cooperation

• Working environment
o Noise level
o Individual working (thinking) space
o Proximity of team members

• Problem-solving skills
• Software engineering ability

This working definition is compatible with the major attributes specified (at
the beginning of this section) and focuses on the attributes that have the
greatest impact on software cost and schedule.

Motivation, use of team methods, and working environment underscore the
importance of management and communication in the capability rating.

The first step of the capability evaluation categorizes the organization’s
management style as either Theory X or Theory Y47

1. Work is inherently distasteful to most people.

. Theory X assumes the
organization (or at least the project manager) attitude toward the project
personnel can be described as:

2. Most people are not ambitious, have little desire for responsibility,
and prefer to be directed.

3. Most people have little capacity for creativity in solving
organizational problems.

4. Most people must be closely controlled and often coerced to achieve
organizational objectives.

 Theory Y, which is diametrically opposed to Theory X, assumes:

1. Work is as natural as play, if conditions are favorable.

2. Self-control is often indispensable in achieving organizational goals.

3. The capacity for creativity in solving organizational problems is
widely distributed in the population.

4. People can be self-directed and creative at work if properly
motivated.

Theory X is often referred to as a directing management style, while Theory
Y is a leading style. The Theory Y management style is easily ascertained
by interview with the software development staff. Projects managed by
leaders are typified by high motivation and morale. Although most
managers claim to practice participative management (leading), numerous
research studies indicate that authoritarian (directing) management styles
were predominant in software development organizations.

The ACAP rates the personnel who are responsible for the front end or high
level design elements of the software development. These people are usually

47 Hersey, P., and K.H. Blanchard. Management of Organizational Behavior:
Utilizing Human Resources. Prentice-Hall, Inc. Englewood Cliffs, NJ: 1977.

Never tell people how to do
things. Tell them what to do
and they will surprise you
with their ingenuity.

George S. Patton, Jr.

Not every group is a team,
and not every team is effective

 Glenn Parker

89

classified as software engineers or system analysts. The
rating is related to the analyst team performance as shown in
Table 8-1. The rating description focuses on motivation and
team performance which are the major drivers in the rating.

Note that “team” combines the impact of the physical
environment with the ability to communicate effectively48

A group of software engineers located in an individual
cubicle environment cannot work together due to the limited
communications allowed; thus, the highest rating possible in the ACAP
ratings is a traditional software organization (1.0). Section 8.4 explains in
detail the communication issues, how to rate the communications ability of
the software development team, and the impact of the development
environment on communications and the capability ratings.

.
A team, according to Webster’s dictionary, is a group of
people working together. If physical or management
communication barriers exist, a team cannot form. A group
of people assigned to a common project does not define a
team.

An understanding of communication dynamics is essential to the correct
evaluation of personnel capability, both analyst (software engineer) and
programmer.

8.2.1.2 Programmer capability
The PCAP rates the programming team performance as
shown in Table 8-2. The rating criteria are the same as
those used in the ACAP rating. The people evaluated in
the PCAP rating are the implementers (coders,
programmers, etc.) of the software product.

If the same group of people design the software
architecture and implement the solution, you would expect
the ACAP and PCAP ratings to be identical. However, it is
possible that the group is great at design and poor at
implementation, or vice versa. In that case, evaluate the
ratings accordingly.

8.2.1.3 Application domain experience
Domain experience is the measure of the knowledge and experience the
software team has in a specific application area. The measure is one of
effective team experience and will be described in greater detail in Section
8.2.1.5. In essence, effective experience has much to do with the ability to
communicate within the team as a whole.

Lack of experience has multiple effects on the ability to produce a product.
Not knowing what to do is one example. Another, recovering from false
starts during the definition and implementation phases, also multiplies the
lack of productivity. Greater experience allows the development team to
leverage knowledge and gain greater efficiencies. The relative productivity
swing due to experience alone is approximately 50 percent.

48 Communication issues are discussed in detail in Section 8.5

Table 8-2: Programmer capability ratings

PCAP – Programmer Capability

Value Description

0.70 Highly motivated AND experienced team organization

0.86 Highly motivated OR experienced team organization

1.00 TRADITIONAL software organization

1.17 Poorly motivated OR non-associative organization

1.42 Poorly motivated AND non-associative organization

Table 8-1: Analyst capability ratings

ACAP – Analyst Capability

Value Description

0.71 Highly motivated AND experienced team organization

0.86 Highly motivated OR experienced team organization

1.00 TRADITIONAL software organization

1.19 Poorly motivated OR non-associative organization

1.46 Poorly motivated AND non-associative organization

90

8.2.1.4 Learning curve
The learning curve phenomenon is a factor in each of the five experience
ratings: application experience (AEXP), development system experience
(DEXP), programming language experience (LEXP), practices and methods
experience (PEXP) and target system experience (TEXP).

Section 8 is only concerned with the effort impact of the application
(domain) experience rating as part of establishing the developer’s basic
capability including current experience levels and learning curves. The bulk
of the experience ratings with the learning curve effects are individually
discussed in Section 9.

The effects of the learning curve are observable in three areas:

• An initial penalty determined by the magnitude of technology
change.

• A maximum learning rate that is controlled by the complexity of the
application, process, or system.

• The mastery cost will equal a priori49

remains unchanged.
cost if process efficiency

The a priori cost represents the hypothetical cost, or productivity,
in the absence of any penalty due to the introduction of a new
application area. Over time, the impact of the new discipline will
decrease until the area is mastered as illustrated in Figure 8-4. The
mastery cost is not always equal to the a priori cost. The mastery
cost can be lower if the ending capability is more efficient than the
a priori capability. The learning curve penalty is always measured
at the start of development.

The five identified learning curve experience parameters are
distinguished by two variables, years and complexity. The first
variable is the number of years of experience. The second variable
is the type or complexity of the language or system. The resulting
combination of the two variables donates the relative impact.

The effective average experience of the team is an important concept in
calculating the cost impact of the experience parameters. Average
experience is the simple arithmetic average experience measured over the
number of software development team members. If the team members are
isolated from each other by placing the members in separate offices or
cubicles, they have no opportunity to leverage their learning and experience
with the result that the experience rating cannot be better than a simple
average. If you place the team members in an environment where the
members can leverage their experience, the result is an effective experience
level that is closer to that of the most experienced member. For example,
place an expert in a work area supporting free communications with the
requirement that the sole purpose of the expert is to support a group of
inexperienced developers. Let the work area be a Skunk Works™. Does the
group of developers function as though the group had the experience
approaching that of the expert? The relative experience value between a
simple average and the expert is almost solely dependent on the quality of
communications.

49 Proceeding from a known or assumed cause to a necessarily related effect.

Figure 8-4: Learning curve impact

Initial penalty
Maximum learning rate

a priori cost

Mastery Cost

Initial penalty
Maximum learning rate

a priori cost

Mastery Cost

No matter what the problem is, it’s
always a people problem

G.M. Weinberg, 1988

91

8.2.1.5 Domain experience rating
Application experience rates the project impact
based upon the effective average application
experience for the entire development team.
Applications are divided into three categories
based upon the task complexity. The categories
are: (1) low complexity – application has little or
no interaction with the underlying operating
system, (2) medium complexity – some
interaction with the underlying operating system,
as might be found in a typical C2 or C4I system,
and (3) high complexity – major interaction with
the underlying operating system such as a flight
control system.

Development effort penalties—as a function of
application complexity and average team domain
experience—are shown in Figure 8-5. Note the
penalty can be less than one (a priori level)
indicating a productivity gain for teams with
greater experience. This is one example where
the post-mortem productivity is higher than the a
priori productivity.

8.2.1.6 Modern practices
The Modern Programming Practices (MODP) rating,
shown in Table 8-3, is one of the more difficult
environment evaluations. The MODP rating establishes
the cultural level of modern development methods use in
the organization at the start of the full-scale software
development (Software Requirements Review). Cultural
use level defines the level of practice that is the de facto
development standard; that is, the methods and practices
that are used by default in the development. There are
other parameters in the environment evaluation that
account for less experience with the practices (e.g.,
development system experience, practices experience).
Allowing non-cultural ratings in this parameter evaluation
creates double-counting issues. Most project managers
claim (at least) reasonable experience in most modern
practices. Only demonstrated successful practices use is
allowed in the evaluation. Some of the practices
considered in this rating are:

• Object-oriented analysis and design

• Structured design and programming

• Top down analysis and design

• Design and code walkthroughs and inspection

• Pair programming

Note that the list does not include development systems, compilers, etc.
These facilities are accounted for in the TOOL rating.

There have been a large number of studies and papers written which cite
large productivity gains due to adoption of modern development practices. It

Figure 8-5: Impact of Application Experience on software product

development effort

0.80

0.90

1.00

1.10

1.20

1.30

1.40

0 2 4 6 8 10 12

Years

Pe
na

lty

Low
Medium
High

 Table 8-3: Traditional use of modern practices rating

MODP – Use of Modern Practices

Value Description

0.83 Routine use of ALL modern practices

0.91 Reasonable experience in MOST modern practices

1.00 Reasonable experience in SOME modern practices

1.10 EXPERIMENTAL use of modern practices

1.21 NO use of modern practices

92

is difficult to isolate the gains to the modern practices
from the gains of other factors such as better personnel,
better development tools, improved management
approaches, better environments, etc.

CMMI levels improve the development process in two
significant ways. The first is increased productivity as
the organization moves from Level 1 to Level 5. The
gain isn’t as significant as often advertised, but is better
than zero. The second main effect is narrowing the
productivity dispersion so the cost and schedule of a
development are much simpler to project from
historical data. The data shows the trend toward higher
CMMI ratings over the 15-year period contained in the
report. In the late 1980s, the DoD issued a statement
that contracts would not be issued for organizations
with less than a Level 3 rating. It is interesting to note
that Figure 8-6 shows the trend hits a wall at Level 3
(Defined). Also note in 1987 that 99% of the measured
organizations (the yellow line labeled 99) were at Level
3 or below, whereas only 94% were at that level or
below in 2002.

The difficulty in evaluating the MODP rating can
be eliminated, or at least reduced, by approaching
the measure from another more stable metric, as
shown in Table 8-4. The Software Engineering
Institute/CMMI rating can be used as a modern
practices measure that removes much of the
wrangling from the evaluation process. There is
strong correlation between the CMMI level and the
measurable modern practices rating. Note that
once the organization reaches Level 3, further
productivity improvement does not materialize
until after process data has been collected and used
for process optimization/improvement. This
improvement may not occur for some years after
the Level 5 process maturity has been achieved.
Ratings above the “reasonable experience in some
modern practices” are not realistic until gains in
previous projects can be demonstrated. There are
few Level 5 organizations that can justify the
improvement needed for the highest two ratings.
Note the strong correlations between CMMI and the MODP productivity
tables.

8.2.1.7 Modern tools
The automated tool support parameter (TOOL) indicates the degree to which
the software development practices have been automated and will be used in
the software development. Tools and practices not considered to be part of
the development culture are not considered. The list of tools and criteria
shown in Table 8-5 can be used to aid in selection of the appropriate value.

Table 8-4: Relationship between CMMI and MODP ratings

MODP – Use of Modern Practices

CMMI
Definition

CMMI
Level

Value Description

Optimizing 5 0.83 Routine use of ALL modern
practices

Managed 4 0.91 Reasonable experience in MOST
modern practices

Defined 3 1.00 Reasonable experience in SOME
modern practices

Repeatable 2 1.10 EXPERIMENTAL use of modern
practices

Initial 1 1.21 NO use of modern practices

Figure 8-6: CMMI Rating improvement over the
period 1987 to 2002

99
94

SE
I

CM
M

 C
at

eg
or

y
Pe

rc
en

ta
ge 80

29

12

43

7

22

0
4 <1 2

Initial Repeatable Defined ManagedOptimizing

1987
Mar 2002

714 US organizations

Source: Process Maturity Profile of the Software Community
2002 Update – SEMA 3.02

99
94

SE
I

CM
M

 C
at

eg
or

y
Pe

rc
en

ta
ge 80

29

12

43

7

22

0
4 <1 2

Initial Repeatable Defined ManagedOptimizing

1987
Mar 2002

714 US organizations

Source: Process Maturity Profile of the Software Community
2002 Update – SEMA 3.02

93

Table 8-5: Modern tool categories and selection criteria

It is common to have tool support with elements in
more than one category. In rating the automated
tool environment—which likely has tools from
more than one category—judgment is necessary to
arrive at an effective level of tool support. The
judgment should also assess the quality and degree
of integration of the tool environment. The rating
value should be selected from the Table 8-6
category that best describes the development
environment.

8.2.2 Basic technology
constant calculation
The basic technology constant (Ctb) describes the developer’s raw capability
unimpeded by the project environment. The basic technology constant was
derived by fitting historic project data to the Jensen model (Sage, Seer, and
SEER-SEMTM) cost and schedule equations. However, the measure is
equally valid as a capability measure for the COCOMO family of estimating
tools, even though the measure is not automatically produced in these tools
(except for REVised Intermediate COCOMO [REVIC]). The resulting basic
technology constant equation is:

Very Low Level of Automation (circa 1950+) Low Level of Automation (circa 1960+)
Assembler
Basic linker
Basic batch debugging aids
High level language compiler
Macro assembler

Overlay linker
Batch source editor
Basic library aids
Basic database aids
Advanced batch debugging aids

Nominal Level of Automation (circa 1970+) High Level of Automation (circa 1980+)
Multi-user operating system
Interactive source code debugger
Database management system
Basic database design aids
Compound statement compiler
Extended overlay linker
Interactive text editor
Extended program design language
Source language debugger
Fault reporting system
Basic program support library
Source code control system
Virtual operating system

CASE tools
Basic graphical design aids
Word processor
Implementation standards enforcer
Static source code analyzer
Program flow and test case analyzer
Full program support library with configuration
 management (CM) aids
Full integrated documentation system
Automated requirement specification and analysis
General purpose system simulators
Extended design tools and graphics support
Automated verification system
Special purpose design support tools

Very High Level of Automation (circa 2000+)
Integrated application development environment
Integrated project support
Visual programming tools
Automated code structuring
Automated metric tools
GUI development and testing tools
Fourth Generation Languages (4GLs)
Code generators
Screen generators

Table 8-6: Use of automated tools support rating

TOOL – Automated Tool Support

Value Description

0.83 Fully integrated environment (circa 2000+)

0.91 Moderately integrated environment (circa 1980+)

1.00 Extensive tools, little integration, basic maxi tools (circa
1970+)

1.10 Basic mini or micro tools (circa 1960+)

1.24 Very few primitive tools (circa 1950+)

94

()aC

Tv

TOOLPCAPMODPAEXPACAPT

tb exp2000
11.4

ln7419.0

∗=

∗−=

∗∗∗∗= (8-1)

The productivity factor for Jensen-based models is the effective technology
constant (Cte) defined in Equation (5-5). This equation combines the basic
technology constant with the product of the development environment
factors if . The resulting productivity factor is:

∏
=

i
i

tb
te f

C
C (8-2)

8.3 Mechanics of communication
Teams do not function well without effective communication. Two
questions to consider in evaluating communication ability are: (1) Does the
development area design support free communication between team
members? and (2) Are tools in place to support discussion?

Broadly defined, communication means: the act or process of
communicating. It is a process in which information is exchanged
between individuals using a common system of symbols, signs, or
behavior. The related definition of collaboration is to work jointly with
others or together, especially in an intellectual endeavor. Both elements
are necessary to effectively produce a software product.

Communication or information transfer is one of the most important
considerations in the world of productivity improvement. It dominates a
large percentage of the time devoted to software development whether
information is transferred via reports, analysis, problem resolution, or
training. Several studies suggest that the time spent in some form of
communication exceeds 33 percent of a programmer’s work day.
Improved productivity, therefore, relies on the effective and efficient transfer
of information.

The effectiveness of voice or visual radiation is supported by a well-
known research study by Mehrabian and Ferris.50

The effectiveness of the information transfer, however, is diminished when
we remove any source of information radiation. For example, we can
remove the visual part of the transfer by forcing the communicators to use a

 According to
Mehrabian and Ferris, 55 percent of information in presentations is
transferred by body language (i.e. posture, gestures, and eye contact), as
shown in Figure 8-7. Thirty-eight percent of the information is
transferred through vocal tonality (i.e. pitch, volume, etc.), and 7 percent
of the information transferred comes from the words, or content, of the
presentation. These results are hardly surprising given that our body cues
often convey the meaning of our words. For example, we all express
many different meanings of the word “no” in normal conversation
without giving much thought to the tone and body language
accompanying the word.

50 Mehrabian, A., and S.R. Ferris. “Inference of Attitudes from Nonverbal
Communication in Two Channels.” Journal of Counseling Psychology, Vol. 31,
1967.

Figure 8-7: Components of communication

Voice
38

Body
55

Word
7Tone

 38

Five Commandments for a Highly
Productive Environment

I. Thou shalt not construct

communication barriers.
II. Thou shalt dedicate the project

area.
III. Thou shalt not interfere with the

project space.
IV. Thou shalt provide utensils for

creative work.
V. Thou shalt not share resources.

95

telephone. This eliminates all of the gestures, body language, and eye
contact from the conversation. These important radiation sources are no
longer available to reinforce understanding between the two individuals and
can lead to gaps in communication, as well as misunderstandings. For
example, we may change our language style when talking on the phone.
This could lead to an inference of disinterest, which seeing body language
would dispel. People cannot see you nod your head in agreement on the
telephone.

The information transfer is further diminished by using e-mail instead of
vocal conversation. We eliminate the subtle elements of the conversation
radiated by volume and tone such as sarcasm or disappointment. Think of
the times you may have called or been called by someone about a date or an
appointment and they make an excuse about not being available. The loss of
vocal tone may cause you to miss the “get lost” message they are trying to
convey.

Information transfer is significantly degraded when we rely solely on paper
because we remove the ability to ask and respond to clarifying questions.
We lose not only the subtle elements of voice communication, but also the
real-time elements necessary for feedback between one another. Feedback
may still be present, but at a much slower rate. This impairs the integrity or
accuracy of the feedback as well.

Some suggest that the solution to communication barriers is modern
technological, such as e-mail and network communications. These solutions
are often proposed for local communication support and to justify remote
software development teams. Ironically, this technological solution raises
greater barriers than the cubicle example. At least people in adjacent
cubicles have some physical contact. Remote locations are sometimes
separated by thousands of miles. The loss of visual and voice radiation, as
well as real-time responsiveness, creates a virtual wall.

8.3.1 Information convection
A good analogy for describing communication flow in a development
environment was introduced by Alistair Cockburn51

Information flow can also be blocked by a draft, which is a way of
describing unwanted or irrelevant information in our metaphor. A draft can
be discussion of a topic not related to the project that is loud or obtrusive
enough to disturb the other members of a team.

 in 2002. “Convection
currents” of information move about a work area just like the movement or
dispersion of heat and gas. Air moves freely through an area unless the air is
blocked or diverted by an obstruction. Information moves in precisely the
same fashion. When two programmers are seated at adjacent desks, they can
discuss mutual problems freely, and information flows unobstructed between
the two people. The information flow, however, decreases as the
programmers’ separation distance increases. If a barrier or wall, real or
perceived, is placed between the programmers, the information flow is
further attenuated, except for the information dispersion that occurs over the
wall. If the programmers are placed in private offices, the information flow
is blocked and becomes zero. Thus, instead of having the feeling of a team
effort, the programmer’s attitude becomes “I do my part and then throw it
over the wall.”

51 Cockburn, A. Agile Software Development. Addison-Wesley, New York, NY:
2002.

Companies that sensibly manage
their investment in people will
prosper in the long run.

 Tom DeMarco and Tim Lister

96

8.3.2 Radiation
As previously mentioned, radiation occurs either aurally or visually.
Radiation can also occur, on a smaller scale, from touch and smell.
Information can also radiate from dry erase boards, paper, posters, sticky
notes, and pictures. Because we want to maximize the amount of useful
information being conveyed, we will discuss the optimal ways that
information is radiated.

The optimal source of radiation communication is both vocal and visual.
Voical and visual communication is radiated by expression, gestures, pitch,
volume, inflection, exaggerations, and movement. Two people discussing a
problem at a dry erase board or at a computer terminal exemplify this ideal
situation. This source of radiated information is optimal because of the
response time between the speaker’s statements and the listener’s responses.
The real-time nature of the conversation allows instantaneous questions to
remove any misunderstandings and to clarify statements and questions.

8.3.3 Communication barriers
As explained, walls impede the flow of information. Consequently, walls
decrease productivity. This impediment includes both visible and invisible
walls. Assume a large open area filled with workstations that are spaced 10
feet apart front-to-back and side-to-side. People can move freely about the
workspace. Since they are not totally enclosed, communication between
individuals in this matrix should be reasonably unimpeded52

We raise invisible walls if we alternate rows in this matrix with personnel
from another project. This spacing causes the distance between related
people to increases from 10 to 20 feet. This increased spacing between
members of the development team decreases information flow. Thus, the
presence of unrelated people forms a literal wall that impedes the
information flow. The same effect can be achieved by randomly placing
people from a second project in the work area of another project. The
information radiated by people from the unrelated second project creates
what Cockburn referred to as drafts, a flow of unwanted information.

. This was the
original cubicle concept.

The optimum information flow communication concept suggests a seating
arrangement that increases information flow while discouraging drafts. The
project area should be arranged so that people are sitting within hearing
distance while limiting information not helpful to them (drafts). You can
develop a sense for this as you walk around the development area.

It is difficult to establish analyst and programmer capability ratings higher
than “traditional” in the presence of an environment that does not foster
effective communications.

8.3.3.1 Skunk Works
A classic example of effective information convection is the Lockheed
Skunk Works™, primarily because it dispenses with both physical and non-
physical walls. The Skunk Works was an unofficial name given to the
Lockheed Advanced Development Projects Unit managed by Kelly Johnson,
designer of the SR-71 strategic reconnaissance aircraft. The most successful

52 Becker, F., and W. Sims. Workplace Strategies for Dynamic Organizations,
Offices That Work: Balancing Cost, Flexibility, and Communication. Cornell
University International Workplace Studies Program, New York, NY: 2000.

97

software organizations have followed this paradigm in the organization of
their development teams and environments.

As a generic term, “skunk works” dates back to the 1960s. The common
skunk works definition is: a small group of experts who move outside an
organization’s mainstream operations in order to develop a new technology
or application as quickly as possible, without the burden of the
organization’s bureaucracy or strict process application. Conventional skunk
works operations are characterized by people who are free thinkers, creative,
and who don’t let conventional boundaries get in the way (Theory Y). The
skunk works workspace is a physically open environment that encourages
intra-team access and communication. Tools and processes are tailored and
adapted to the project’s requirements. Kelly Johnson established 14 Basic
Operating Rules53

8.3.3.2 Cube farm

 to minimize development risk while maintaining the
greatest possible agility and creativity in a lean development team. The rules
covered everything from program management to compensation and are
relevant for any advanced research unit within a larger organization.

A counter-example to the Skunk Works™ approach to software development
is the common cube farm. The cube farm violates all of the rules for a
productive environment in terms of both communication and collaboration
primarily because they raise all the barriers that block effective
communication. Unfortunately, the cube farm is the most common, or
widely used, software development environment. Probably 90 to 95 percent
of the development organizations operating today work in cube farms.

8.3.3.3 Project area
Reiterating the concepts explained above, a physical project area should be
allocated for a specific development task and not shared by multiple
projects. From the standpoint of information convection, all of the
information moving about the development area should be related to the
same software development activity. Mixing projects in a specified area
creates drafts. Dedicating a specific project area places all of the
development personnel in close proximity with as few sources for drafts as
possible. Adding people from non-related projects also separates project-
related people thereby limiting the information flow and inhibiting
discussion and collaboration.

Another side effect of an undedicated project area is that the presence of
people from another task prevents the team from forming into a focused,
cohesive unit. An extreme view of this phenomenon occurs when the project
area is a general software engineering area accommodating multiple
projects. Project teams never form in this situation.

8.3.4 Utensils for creative work
We have learned from experience and research that communication and
collaboration are key elements in productivity and quality improvement.
Our earlier discussion about information convection and radiation suggests a
set of low-tech utensils are best for creative work. These utensils include:

53 Rich, Ben R., and L. Janos. Skunk Works: A Personal Memoir of My Years at
Lockheed. Little Brown, Boston: 1994.

98

• Dry erase boards
• Easel pads
• Butcher paper
• Post-it® notes
• Kitchenette (break room w/dry erase boards)
• Informal discussion areas (brainstorming area)
• Popcorn (the smell attracts people who end up talking, most often

about the project they are working on)

None of these utensils fit well within a cubicle environment. Dry erase
boards, Post-it® notes, and popcorn can be physically placed in a cubicle,
but for individual use only. Group activities using the above utensils require
large cubicles or workspaces that support teams rather than separate them.
The most effective environment supports people working together
effectively. Effective team activities require utensils to support
communication. You cannot tell children not to eat with their hands without
providing an alternative. Likewise, you cannot build project teams without
providing team building tools.

When evaluating an organization’s productivity, the presence or absence of
these tools profoundly affects the result. Tools, experience, environment,
management styles, and, especially, communication are important
considerations in determining developer capability. They are significant
characteristics of the developer organization and, consequently, the basic
technology constant which is an important parameter to consider for
estimating or when comparing organizations.

99

Section 9
Development Environment

Evaluation
Based upon the information described in Section 8, three controlling factor
types can be identified which govern software development productivity.
These factors are:

1. Basic developer capability
2. Environment constraints imposed by the development requirements
3. Product characteristics

The environment factors independent of the development requirements were
included in the basic technology constant discussed in Section 8. The
environment constraints include the experience levels for programming
language, development and target systems, and development practices. Each
of the experience factors are subject to the learning curve characteristics
introduced in Section 8.2.1.4. The learning curve accounts for the
productivity loss due to a lack of expertise by individuals in the
environment. People still make mistakes even though efficiency improves
with knowledge, understanding, and experience.

Product characteristics that limit productivity include the development
standards and reliability concerns, requirements volatility, memory and
performance constraints, and operational security, among others. Typical
productivity (in source lines per person month [ESLOC/PM]) can be as high
as 300 ESLOC/PM for an accounting system, yet only 50 ESLOC/PM for a
space satellite payload with the variance attributable only to product
characteristics.

The environment and development processes contain imperfections. The
“volatility” factors describe the impact of these imperfections (bugs). The
volatility ratings describe the impact of the environment immaturity. The
volatility factors are:

• Development system volatility (DVOL)
• Target system volatility (TVOL)
• Practices/methods volatility (PVOL)

The physical environment also has a DIRECT and significant impact on
productivity and quality. The important physical characteristics are:

• Number and proximity of development sites, multiple development
sites (MULT)

• Number of real or virtual organizations involved in software
development, multiple organizations (MORG)

• Number and severity of security classifications in the project,
multiple classifications (MCLS)

• Location of development support personnel, resource support
locations (RLOC)

• Access to development and target resources, resource dedication
(RDED)

The most incomprehensible thing about the
world is that it is comprehensible.

 Albert Einstein

Einstein argued that there must be a
simplified explanation of nature
because God is not capricious or
arbitrary. No such faith comforts the
software engineer. Much of the
complexity that he must master is
arbitrary complexity.

 Fred Brooks

Poor management can increase
software costs more rapidly than any
other factor… Despite this cost
variation, COCOMO does not include
a factor for management quality, but
instead provides estimates which
assume that the project will be well
managed…
 Barry Boehm

100

• Average terminal response time (RESP)
• Access to hardcopy – source listings, etc., hardcopy turnaround

time (TURN)

9.1 Learning curve vs. volatility
There is an issue that must be clarified before we can discuss the
development environment. The impact of the environment on the
development cost and schedule occurs on two fronts: learning curve and
volatility. The first occurs due to inexperience with the processes and tools
present in the environment. The second impact relates to the maturity of the
development process itself.

The learning curve, evaluated through the experience parameters, accounts
for the loss of productivity due to a lack of understanding and expertise by
the individuals in the development environment. Efficiency in any area
improves with knowledge, experience, and understanding of that area.
People make mistakes; this is a fundamental property of the universe. The
number of mistakes, and the impact of those mistakes, can be grouped under
an umbrella which we think of as human breakage. The impact of the
breakage varies with experience.

Volatility accounts for imperfections in the process. The environment
contains “bugs” which we think of as process breakage. As the process
matures, the breakage decreases. New technology is always immature, even
if the development organization is certified at CMMI Level 5. Old
technology is always somewhat immature. Operating systems undergo a
continuing series of upgrades during their useful life to repair errors that
were undiscovered at the time of delivery. Methods continue to evolve as
development methods improve. The evolution of technology never reaches
perfection.

Experience and volatility must be accounted for even in mature
environments and product lines.

9.2 Personnel experience characteristics
There are three concepts that define the personnel experience characteristics.
They are briefly:

1. Initial penalty determined by magnitude of technology change

2. Maximum learning rate controlled by complexity of application,
process, or system

3. Mastery cost will equal a priori (prior) cost if process efficiency
remains unchanged

The learning curve phenomenon is a factor in each of the five experience
ratings: application experience (AEXP), development system experience
(DEXP), programming language experience (LEXP), practices and methods
experience (PEXP), and target system experience (TEXP). Each parameter
shows a maximum penalty for no experience at the start of development, and
a decreasing penalty based upon prior experience (always measured at the
start of development) and the relative impact of that parameter. The mastery
cost may be less than the a priori cost; that is to say that a lot of experience
should hopefully improve productivity.

101

The a priori cost represents the hypothetical cost or productivity in the
absence of any penalty due to the introduction of the experience parameter of
interest. For example, assume you have a “black belt” in the FORTRAN
programming language. Use of the language has become an important
element of your culture. For this project, you are being introduced to the
C++ language due to a project requirement. Both FORTRAN and C++ are
third generation languages and, for the purpose of this example, the number
of source code lines required to satisfy project requirements are similar for
both languages.

The first time you use a language, there will be a productivity
loss represented as the initial penalty (shown in Figure 9-1). The
second project will have a smaller cost impact. The rate at
which you can learn to effectively use the language is the
maximum learning rate. The learning rate is a function of the
language.

Over time, the cost impact of the language decreases until the
language is mastered. At that time, the use of the language is
culture and the impact drops to zero. However, productivity
(mastery cost) is near the same as before the language change
because the development is unchanged. The mastery cost is not
always equal to the a priori cost. The mastery cost can be lower
if the ending capability is more efficient than the a priori
capability.

Each of the personnel experience parameters is driven by two variables. The
first variable specifies the number of years of experience. The second
variable addresses the language or system type or complexity. The result is
the relative cost impact defined by the two variables. The impact of
programming language experience on software development effort is defined
by language complexity and the number of years of experience.

Effective average experience is an important concept in calculating the
experience value. Average experience is the simple arithmetic average
experience measured over the software development team. If the team
members are isolated from each other by placing the members in separate
offices or cubicles, they have no opportunity to leverage their learning and
experience with the result that the experience rating cannot be better than a
simple average. If you place the team members in an environment where the
members can work together and leverage their experience, the result is an
effective experience level that is closer to that of the most experienced
member. For example, place an expert in a work area supporting free
communications with the requirement that the sole purpose of this expert is
to support a group of inexperienced developers. Let the work area be a
Skunk Works™. Does the group of developers function as though the group
had the experience approaching that of the expert? The relative experience
value between a simple average and the expert is almost solely dependent on
the quality of communications.

9.2.1 Programming language experience
The LEXP parameter evaluates the effective average experience level for the
software development team. The language experience parameter is
classified (grouped) in terms of the number of years it takes to master (black
belt) the language. Mastery is defined as the level at which a programmer
does not need a programming language reference manual to perform most
programming tasks. The mastery level has been established from language

Figure 9-1: Learning curve impact

Initial penalty
Maximum learning rate

a priori cost

Mastery Cost

Initial penalty
Maximum learning rate

a priori cost

Mastery Cost

102

 Figure 9-2: Impact of programming language experience on
software product development cost

1

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4 5

Years

Pe
na

lty

0.5 yr

1 yr

1 yr

3 yr

5 yr

studies in the specific programming language. Most programming
languages are categorized as one-year languages.

The simplest language to master is the 26 statement Dartmouth
BASIC, (see Table 9-1). The next group is the broadest and includes
languages that require approximately one year to master. There are
two languages requiring three or more years to master. The first, PLI
Version F, contains the full language capability including capabilities
such as multi-tasking, etc. Note the PL/I language subset G, omitting
the special Version F features, requires only one year to master.
Ada, C, C++ and C#, using full constracts, have been classed as 5
year mastery languages.

There is a level of programming capability that involves learning to
communicate with a computer. Some refer to this ability as Von
Neumann54

Languages such as Ada, C, C++, C# and others are very complex in
their entirety and most developers use a small subset of these
powerful languages. If you use the language with its complete
structure and capability (including such features as multi-threaded
processes, parallel processing and low level bit manipulation), the
languages take approximately five years to master. The extra years are not
dependent upon the language itself, but are
based on the inherent complexity of non-
language-specific topics. For example,
parallel processing usually requires intimate
knowledge of both the language and
underlying hardware and operating system
characteristics. These complex topics take
the same time to master, regardless of the
language used.

 thinking. That ability is common to all programming
languages. Pascal is a special case when transferring to any complex
language. The lower subset of Pascal, Ada and C derivatives are
much alike, so that it is assumed that the knowledge gained in the
first year of Pascal use is directly transferable to any complex
language. Thus, there is a difference between Pascal and FORTRAN
as starting languages.

The relative impact of programming
language experience on development cost is
shown in Figure 9-2. Each curve in the
figure represents one language category
from Table 9-1. The worst impact is a
relative cost increase of 1.53 for a complex
language project using programmers with
no experience with the language or only a
basic understanding of how to communicate
with a computer. The corresponding cost
impact for a Dartmouth BASIC project
under the same conditions is only 1.15, or
15 percent.

54 John Von Neumann (1903 – 1957), mathematician and major contributor to a vast
range of fields, is considered by many as the father of the modern computer.

Table 9-1: Programming language mastery
time (Years)

Mastery
Years

Programming
Language

0.5 BASIC

1 FFORTRAN
 COBOL
 C/ C++ / C#
 (basic constructs)
 PL/I Subset G
 Pascal
 Ada (basic constructs)
 Macro Assemblers

2 JOVIAL
 CMS-2
 Mainframe assemblers

3 PL/I Version F

5 Full use of Ada/ C / C++/ C#

103

9.2.2 Practices and methods experience
The PEXP rating specifies the effective average experience of the team with
an organization’s current practices and methods at the start of the
development task. The groupings (Code 1, etc.) in this parameter are related
to the levels of the MODP rating. The rating assumes the organization is
moving to a higher MODP rating (1, 2, or 3 level transition). The MODP
level the transition is moving “from” is assumed to be a “cultural” MODP
level; that is, the organization has been at the “from” level
for a long time and it represents the normal organizational
approach for developing software. A one-level transition in
the MODP rating corresponds to the Code 1 transition.

The organization has zero or more experience at the “to”
level. The PEXP experience level specifies the amount of
experience gained at the “to” level at the start of software
task development. Experience will be gained at this new
level during the development. This experience is not
considered in evaluating the parameter; in fact, the
experience is already accounted for in the parameter values.

If the developer organization is not attempting a transition
during the project, the PEXP rating will be 1.0.

An interesting lesson that is visible in Figure 9-3 is the very
large penalty involved in attempting a transition from the
“Dark Ages” to modern practices makes a large transition
dangerous. Any transition from the culture level has a
negative productivity impact on the project under
consideration and supports the rationale to not introduce any
new practices during a development contract.

9.2.3 Development system
experience
The Development System Experience (DEXP) parameter
evaluates the impact of the effective average development
system experience on the project productivity. The
development system consists of the hardware and software
(computer, operating system, database management system,
compilers, and tools) used in the software development.
Programming language is NOT considered in this evaluation;
however, the compiler and other language tools are
considered.

Systems are separated into three groups for the purposes of
this evaluation. The first group is the single-user system,
such as a desktop personal computer. The second group is a
centralized multiple-user system, such as a star configuration
that serves the development activity. The third type is a
distributed system in which multiple computers and multiple
users are involved. Web-type systems are in this category.

Each of the impact curves begins with an experience level of
zero years. Experience gained with a single-user system can
be applied to the higher complexity systems as demonstrated

Figure 9-4: Impact of development system experience on

software product development effort

1

1.05

1.1

1.15

1.2

1.25

0 1 2 3

Years

P
en

al
ty Single

Multiple
Distributed

Figure 9-3: Impact of practices and methods experience

on software product development effort

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 1 2 3

Years

Pe
na

lty

Code 1
Code 2
Code 3

104

for the language experience ratings. As shown in Figure 9-4, a year of
experience with a single system reduces the penalty from 1.16, assuming
zero experience with the multiple user system, to 1.10 (a one-year penalty).
Adding one year of additional multiple user system experience equates to a
distributed system experience penalty of 1.03 (two years cumulative
experience).

The development system experience rating highlights the high penalty when
moving to an unfamiliar development system at the start of a project, even
when non-project-related parts of the organization are culturally familiar
with the system. It also points out the value of having co-located
development system experts as part of the project organization.

9.2.4 Target system experience
The TEXP parameter evaluates the effective average target
system experience for the project team. The target system, or
platform, consists of the hardware and software (computer,
operating system, etc.) used in the software product.

Systems are separated into three groups for the purposes of this
evaluation (with an example shown in Figure 9-5). The first
group is the single-user system, such as a desktop personal
computer. The second group is a centralized multiple-user
system, such as a star configuration that serves the development
activity. The third type is a distributed system in which
multiple computers and multiple users are involved. Web-type
systems satisfy this category.

Caution: If the target system and development system are the
same, set the target system experience level at 3 years (or
values to 1.00) so the platform does not get counted twice in the
estimate.

9.3 Development support
characteristics

9.3.1 Development system volatility
The DVOL parameter accounts for the development effort impact related to
problems created or amplified by changes and/or failures in the
organization’s development system. Those listed as major
changes in the parameter are essentially “show stoppers”
that halt development until the problems are resolved.
Some examples of major changes are: a significant upgrade
to an operating system, a re-certified Ada compiler release,
or beta versions of any software system.

A minor change creates a slowdown. For example, the
slowdown might be caused when an error is uncovered in
the process, tools, or methods used in the software
development.

The performance penalty accounts for a productivity loss,
not a change in software product functionality or a change
in product size. The relative impact varies from zero
(rating value of 1.00) to a 25 percent increase in
development effort, as shown in Table 9-2.

Table 9-2: Development system volatility ratings

DVOL – Development System Volatility

Value Description

1.00 No major changes, annual minor changes

1.07 Annual major changes, monthly minor changes

1.13 Semiannual major changes, biweekly minor changes

1.19 Bimonthly major changes, weekly minor changes

1.25 Biweekly major changes, minor changes every 2 days

Figure 9-5: Impact of target system experience on

software product development effort

1

1.02

1.04

1.06

1.08

1.1

1.12

0 1 2 3

Years

P
en

al
ty Single

Multiple
Distributed

105

9.3.2 Practices/methods volatility
The PVOL rating accounts for problems created or amplified by changes
and/or failures in the organization’s development practices and methods, as
shown in Table 9-3. Those listed as major changes in the
parameter are “show stoppers” that halt development until the
problems are resolved. For example, the methodology
supported by a computer-aided software engineering tool fails
to work as advertised, or the vendor releases an upgrade to
their tool that changes the way data is tracked.

A minor change creates a slowdown. For example, the
slowdown might be caused when a “bug” is uncovered in the
process, tools or methods used in the software development.

9.4 Management characteristics
The most important management characteristics (analyst
capability, programmer capability, and application domain
experience) are included in Section 8 Basic Capability Evaluation.

 There are additional environment impacts that are best categorized as
management characteristics. These are: (1) multiple levels of security
classification in the project environment, (2) multiple development
organizations sharing project responsibility, (3) project personnel spread
over multiple development sites, and (4) the relative location of the
development support personnel. The combined impact of these management
issues is significant.

9.4.1 Multiple security classifications
The Multiple Security Classification (MCLS) levels rating accounts
for inefficiencies encountered when the development team is working
at different access levels; for example, if the project is
compartmentalized and part of the team lacks clearances, there is an
impact on the organization’s efficiency. Obviously, it is better to have
all team personnel operating with the same project access. The
quantitative development effort impacts of security classification are
shown in Table 9-4. These impacts represent the impacts that can be
directly related to the classification issue. There are additional
impacts related to communication problems that are accounted for in
the capability ratings and in the multiple development sites factors.

9.4.2 Multiple development organizations
The Multiple Development Organization (MORG) rating evaluates
the impact of MORGs on software development productivity.
Multiple organizations always arise when mixing personnel from
multiple contractors. Multiple organizations within a single
organization are possible, and often appear, due to organization
rivalry. Single organization, other organizations, prime and
subcontractors (single site), and multiple contractors ratings are
shown in Table 9-5.

For example, software, system, and test engineering groups within a
single organization function as separate contractors. Assigning
personnel from those organizations to a product-focused organization where
the personnel are controlled and evaluated by the product manager will cause

Table 9-3: Practices/methods volatility ratings

PVOL – Practices/Methods Volatility

Value Description

1.00 No major changes, annual minor changes

1.08 Annual major changes, monthly minor changes

1.15 Semiannual major changes, biweekly minor changes

1.23 Bimonthly major changes, weekly minor changes

1.30 Biweekly major changes, minor changes every 2 days

Table 9-4: Multiple security classifications ratings

MCLS – Multiple Security Classifications

Value Description

1.00 Common security classification

1.06 Classified and unclassified personnel

1.10 Compartmentalized and uncleared personnel

1.15 Multiple compartment classifications

Table 9-5: Multiple development organizations ratings

MORG – Multiple Development Organizations

Value Description

1.00 Single development organization

1.09 Developer using personnel from other organizations

1.15 Prime and subcontractor organization – single site

1.25 Multiple contractors – single site

106

it to function as a single organization. If not evaluated by the product
manager, the rating would deteriorate to the personnel from other
organizations’ rating.

9.4.3 Multiple development sites
The Multiple Development Sites (MULT) rating accounts
for inefficiencies related to separation of team elements.
The separation within this parameter relates to physical
separation. Table 9-6 shows ratings for single sites, as well
as multiple sites in close proximity, separations within 1
hour, and separations less than 2 hours.

A common heuristic states that programmers do not like to
walk more than 50 feet to ask a question; this helps to
define the term “close proximity.” This small separation—
such as team members spread around the building’s
software development area with other projects mixed in the
office (cubicle) arrangement—is enough to be the
difference between a single site and close proximity rating.

Separation is measured in time units rather than distance.
The basic measure is “How long does it take to initiate an
action related to a problem?” Politics within or between
organizations can add to the time separation.

The next rating value, associated with a one-hour separation, includes
development teams separated over multiple floors in a facility or located in
adjacent buildings.

The high rating refers to teams being spread across a city, such as the case
where there are multiple physical sites.

Caution: Do not be tempted to include working across the Internet, with
tools such as e-mail, as sites within close proximity. While necessary and
sometimes a major value-added, nothing compares to one-on-one, face-to-
face contact to get problems solved. This phenomenon is discussed in greater
detail in Section 8.3.

9.4.4 Resources and support location
The Resource and Support Location (RLOC) rating
accounts for the inefficiencies incurred due to a separation
between the development system support personnel and
the development team, as shown in Table 9-7. System
support personnel include the following:

• Operating system support

• Development tool and practices support

• System hardware support

• Programming language support

• Target system support

Access can be limited by either physical, organizational,
and/or procedural constraints, in turn creating wasted time and effort. The
ideal environment places the support personnel within easy access such as
within the magic 50 feet of the development team.

Table 9-6: Multiple development site ratings

MULT – Multiple Development Sites

Value Description

1.00 All developers at single site within same
development area

1.07 Multiple sites within close proximity

1.13 Multiple sites within 1 hour separation

1.20 Multiple sites with > 2 hour separation

Table 9-7: Resources and support location ratings

RLOC – Resources and Support Location

Value Description

1.00 Support personnel co-located with development
personnel

1.12 Developer and support personnel separation < 30
minutes

1.23 Developer and support personnel separation < 4 hours

1.35 Developer and support personnel separation > 6 hours
or working with a foreign target system and language

107

Separation is measured in time units rather than distance as in the MULT
rating. The basic measure is: “How long does it take to initiate an action
related to a problem?”

The worst case (1.35) support conditions exist when the development team is
working with a foreign target system (e.g., Japanese) and operating
environment with user documentation written in the foreign language.
Developing a product on one continental U.S. coast using a joint contractor
and development system on the opposite coast can also create the 6-hour
separation from problem occurrence to the time the problem reaches the
support personnel.

108

Section 10
Product Characteristics Evaluation

Product characteristics make up the third group of parameters that describe a
software development project. Section 7 describes the size (magnitude) of
the project, Section 8 describes the basic capability of the developer which is
the core of the environment, and Section 9 describes the product-related
environment. The focus of this section is the software product
characteristics.

10.1 Product complexity
Complexity (apparent) is defined as the degree to which a system or
component’s design or implementation is difficult to
understand and verify55

There are many measures proposed for software
complexity. Some, such as McCabe’s Complexity
Measure

. In other words, complexity is
a function of the internal logic: the number and
intricacy of the interfaces and the understandability of
the architecture and code. The first thing we must
understand about complexity is that it has nothing to do
with software size. Size is a separate, independent
software product dimension.

56, are precise and require the source code
before the measure can be completed. Putnam57

3T
KD =

empirically noted that when his software database was
plotted as K (total lifecycle effort in person years)
versus T3 (development time in years), the data
stratified according to the complexity of the software
system. The ratio, currently known as the manpower
buildup parameter (MBP), was called D for difficulty in
the early days of estimating. The majority of estimating
tools refer to D as complexity, mathematically stated as:

 (10-1)

Stratification of the values occurs around the system types as shown in Table
10-1, which is a useful rough guide in determining the appropriate D value
for specific software types.

55 Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY:
1990.
56 McCabe, T.J. “A Complexity Measure.” IEEE Transactions on Software
Engineering New York, NY: 1976.
57 Putnam, L.H. “A General Empirical Solution to the Macro Software Sizing and
Estimating Problem.” IEEE Transactions on Software Engineering New York, NY:
1978.

Table 10-1: Stratification of complexity data

D Description

4 Development primarily using microcode. Signal processing
systems with extremely complex interfaces and control logic.

8
New systems with significant interface and interaction
requirements with larger system structure. Operating systems
and real-time processing with significant logical code

12 Application with significant logical complexity. Some changes
in the operating system, but little or no real-time processing.

15
New standalone systems developed on firm operating systems.
Minimal interface with underlying operating system or other
system parts.

21 Software with low logical complexity using straightforward
input/output (I/O) and primarily internal data storage.

28 Extremely simple software containing primarily straight-line
code using only internal arrays for data storage.

All life is an experiment.

Ralph Waldo Emerson

109

There are some distinguishing features of the Putnam complexity data:

• Complexity is the least significant of the principle estimation
parameters except for tasks with high complexity (D<12).

• Complexity is the inverse of the complexity number.

• High complexity increases schedule and, because of the small team-
size allowed, increases productivity.

• Managing a task as though it was more complex—that is, stretching
the schedule or using a smaller team—usually equates to higher
productivity.

The characteristics are summarized in Figure 10-1.

Barry Boehm proposed a similar but more detailed
complexity definition for the COnstructive COst MOdel
(COCOMO). By combining the results of the two
approaches, a detailed method for determining software
system complexity is shown in Table 10-2. The complexity
table is divided into four functional categories, each
describing a software focus: control, computation, device-
dependent (input/output), and data management. The
complexity value selection process consists of the
following steps:

1. Select the column that most closely describes the
function of the software product. An operating system is largely
control. A personnel system is primarily data management.

2. Follow the selected column from a simple system or minimum
complexity (28) to most complex or maximum complexity (4),
stopping at the row that best describes the function of the system.
The operating system is best described by the phrase Re-entrant and
recursive coding. Fixed-priority interrupt handling. The personnel
system is best described by Multiple input and/or output. Simple
structural changes, simple edits.

3. Select the appropriate complexity value from the Rating column.
The operating system description corresponds to a complexity value
of 8. The personnel system rating corresponds to a complexity
value of 15.

4. If the software system fits multiple categories, follow each
appropriate category rating to the row that best describes the
function. The rating should correspond to the category that
represents the greatest percentage of the software, or in some cases,
the category that will drive the development cost and schedule. For
example, a weather prediction program is largely one of data
presentation; however, the development will likely be driven by the
computation aspects of the problem. The best descriptor is
“difficult but structured numerical analysis; near singular matrix
operations, partial differential equations,” which corresponds to a
complexity value of eight.

Figure 10-1: Software complexity illustration

4

28

MOST COMPLEX
Logically complex

Internally interactive
Complex interfaces

LEAST COMPLEX
Simple sequences

Loose coupling
Few decisions

4

28

MOST COMPLEX
Logically complex

Internally interactive
Complex interfaces

LEAST COMPLEX
Simple sequences

Loose coupling
Few decisions

110

10.2 Display requirements
The Special Display Requirements (DISP) rating is divided into four
categories and accounts for the amount of effort to implement user interfaces
and other display interactions that cannot be accounted for by size alone.
The rating values (penalties) are shown in Table 10-3.

The four DISP categories are:

• Simple – no user interface issues

• User friendly – Windows or other Graphical User
Interface (GUI) software

• Interactive – User friendly with the addition of
mechanical interfaces such as track balls, etc.

• Complex – Interactions with multiple processors such
as communication within a flight simulator.

Table 10-2: Complexity rating matrix

Rating Control Ops Computational Ops Device-dependent Ops Data Mgt Ops

28 Straight line code with a
few non-nested Structured
Programming (SP)
operators; Do’s, Cases, If
then else’s, simple
predicates

Evaluation of simple
expressions; for example,
A=B+C*(D-E)

Simple read/write statements
with simple formats

Simple arrays in main
memory

21 Straightforward nesting of
SP operators. Mostly
simple predicates

Evaluation of moderate
level expressions; for
example, D+SQRT(B**2-
4*A*C)

No cognizance needed of
particular processor or I/O
device characteristics. I/O done
at Get/Put level. No cognizance
of overlap.

Single-file subsetting with
no data structure changes,
no edits, no intermediate
files.

15 Mostly simple nesting,
some inter-module
control, decision tables

Use of standard math and
statistical routines. Basic
matrix and vector
operations.

I/O processing includes device
selection, status checking and
error processing.

Multiple input and/or
output. Simple structural
changes, simple edits.

12 Highly nested SP
operators with many
compound predicates.
Queue and stack control.
Considerable inter-module
control.

Basic numerical analysis,
multi-variant interpolation,
ordinary differential
equations. Basic
truncation, round-off
concerns.

Operations at physical I/O level
(physical storage address
translations: seeks, reads, etc.)
Optimized I/O overlap.

Special purpose
subroutines activated by
data stream contents.
Compiles data restructured
at record level.

8 Re-entrant and recursive
coding. Fixed-priority
interrupt handling.

Difficult but structured
Non-linear Analysis (NA):
near singular matrix
operations, partial
differential equations.

Routines for interrupt diagnosis,
servicing, masking.
Communication line handling.

A generalized, parameter-
driven file structuring
routine. File building,
command processing,
search optimization.

4 Multiple-resource
scheduling with
dynamically changing
priorities. Microcode
level control.

Difficult and unstructured
NA, highly accurate
analysis of noisy,
stochastic data.

Device timing-dependent
coding, micro-programmed
operations.

Highly coupled, dynamic
relational structures.
Natural language data
management.

Table 10-3: Special display requirements ratings

DISP – Special Display Requirements

Value Description

1.00 Simple input/output requirements

1.05 User friendly

1.11 Interactive

1.16 Complex requirements with severe impact

111

The first category includes software that has no display requirements or only
a very simple display interface. The interface is primarily for data
presentation with no display interaction.

The second category includes almost all user friendly interfaces. Mouse-
driven user interaction is a typical characteristic of these interfaces. The
source code necessary to produce the external interface accounts for the bulk
of the development effort. The 5 percent penalty accounts for additional
design and test effort needed to create and implement the interface. Note
that modern programming languages generally develop much of the interface
in a building block fashion that eases the implementation and design
requirements. Visual Basic and Visual C++ are typical of these languages.

The interactive third category extends the user friendly capability to involve
additional mechanical interfaces and sensors to implement the user
interaction.

The fourth category accounts for additional effort to implement user
interfaces, such as those in flight simulators. This user interface level
generally involves multiple processors and system components to support
the interface implementation.

10.3 Rehosting requirements
The Rehosting requirements (HOST) rating evaluates the effort
to convert the software from the development product to the
final product on the target system. This penalty does not apply
to projects whose sole purpose is devoted to porting software
from one platform, or system, to another. Software porting
projects are considered full-scale developments of their own.
The values (penalties) are shown in Table 10-4.

Minor language and/or system changes involve inefficiencies
related to minor system differences or minor language
differences moving from the development to the target system.
A minor change might include moving from FORTRAN IV to
FORTRAN 97 or DEC version 5 to version 6. A minor system
change could be a move from the contractor’s development
platform to the target platform in the operational environment if the move is
not transparent.

Major changes are “show stoppers,” such as moving from JOVIAL to the
C++ programming languages or from a Sun platform to an Intel workstation.
A major change is not transparent and involves a major software or system
development. The 63 percent penalty represents more than an additional 50
percent of the development directly to the target system. If both the
language and the system have major development rework,
the 94 percent penalty is essentially the cost of developing
the software twice.

10.4 Memory constraints
The target system Memory Constraint (MEMC) rating
evaluates the development impact of anticipated effort to
reduce application memory requirements. The rating is
divided into four categories, as shown in Table 10-5.

The first category assumes the available target system
memory is abundant and no memory economy measures

Table 10-5: Memory constraint ratings

MEMC – Memory Constraint

Value Description

1.00 No memory economy measures required

1.04 Some overlay use or segmentation required

1.15 Extensive overlay and/or segmentation required

1.40 Complex memory management economy measures
required

Table 10-4: Rehosting requirements ratings

HOST -- Rehosting

Value Description

1.00 No rehosting – common language and system

1.17 Minor language OR minor system change

1.31 Minor language AND minor system change

1.63 Major language OR major system change

1.94 Major language AND major system change

112

are required. Software applications have a way of utilizing all available
memory. Not many years ago, the memory limit was only 16 kilobytes. The
limit today is in the multi-megabyte range and growing. Many application
developments have more than adequate memory resources. No limit means
no penalty.

The second category assumes that some single layer overlaying will be
required to allow adequate resources with room for growth. The
development penalty is only 4 percent.

The third category includes those applications requiring multiple overlay
levels or segments. The penalty for the more severe layering is 15 percent.

The final category includes the truly memory-impaired applications in which
code and algorithm refinement will be required to satisfy memory
constraints. Complex memory management most often occurs in
applications where volume and power consumption drive the size of
application memory. Spacecraft payloads are typical of the complex
memory management applications.

10.5 Required reliability
The Required Reliability (RELY) parameter evaluates the
impact of reliability requirements on the ultimate software
development effort. The reliability impact includes the
specification or documentation level required by the product
development, the level of quality assurance (QA) imposed on
the development, and the test and rigor required in the unit and
formal qualification testing phases. The impacts of reliability
requirements are shown in Table 10-6.

The specification level ranges from software for personal use
through developments requiring certification or public safety
requirements. This list does not include unique very high
levels as those required for Minuteman systems, etc. Most
software developments fall under the commercial or essential
specification levels.

The quality assurance levels do not necessarily equate to the product quality
or reliability required. For example, we expect public safety-level QA to be
imposed where a loss of life is possible. This includes most Federal
Aviation Administration (FAA)-related software, but is not typically
required for military aircraft software. Public safety QA is required for
nuclear weapons software, but doesn’t necessarily apply to nuclear reactor
software. The QA level usually matches the corresponding specification
level. However, special situations occasionally arise, requiring that the QA
level differs from the specification by two or more levels.

The first level (category) assumes the software product will not be used by
other than the creator; hence, neither specifications, nor QA, nor testing is
required and the impact will be zero.

Level 2 assumes the product will have specifications and that some quality
assurance and test (some by the user) will be required. The 16 percent
penalty accounts for this product level.

Military Standard (MIL-STD) specifications, quality assurance, and testing
are required, according to the software development standards involved in
the development. The IEEE 12207 standard is typical for this level of
reliability. The MIL-STD requirements penalty is about 31 percent. The

Table 10-6: Required reliability ratings

RELY – Required Reliability

Value Description

1.00 Personal software – user developed

1.16 Commercial software – user developed

1.31 MIL-STD with essential documentation

1.48 MIL-STD with full documentation

1.77 High reliability with public safety requirements

113

penalty can be increased by adding more rigorous QA and test to the
development.

Level 4 reflects the penalty associated with the MIL-STD development, with
added Independent Verification and Validation (IV&V) requirements. This
category includes additional documentation, QA, and test requirements
consistent with IV&V.

The highest category includes software developments with public safety
requirements similar to those used by the FAA and nuclear systems. The
penalty for these developments is near 77 percent. There are requirements
that rank above the public safety reliability category. The number of
systems above this level is small, too small to define a category, and have
very large penalties. The Minuteman missile system is typical of this
undefined category.

10.6 Real-time performance
requirements
The Real-Time Operation (RTIM) rating evaluates the impact of the fraction
of the software product that interacts with the outside environment. The
term we use traces back to the real-time system analysis definition. In
system analysis, real-time is used to refer to the control or behavior of the
system. Behavior is governed by the sensors, etc., that are external to the
system. For example, activate an alarm when the temperature exceeds 451
degrees Fahrenheit. The temperature, the real-time interface, is coupled to
an external sensor.

Thus, consider communications with the software to be driven by the
external environment or a clock. The fraction of the system that interacts
with the external environment will be large in event-driven systems, such as
process controllers and interactive systems. Again, the real-time behavior is
related to system behavior, not the execution speed of the system. Execution
speed is rated by the time constraint parameter (TIMC).

When less than 25 percent of the application software is
involved in the real-time behavior, the impact of the real-time
operation is negligible as shown in Table 10-7.

When the application software has approximately 50 percent
of the software involved in real-time behavior, the effort
penalty is 9 percent. When the application real-time
involvement reaches approximately 75 percent, the effort
penalty is 18 percent. At this level, the application has
characteristics of a process controller, or a closely coupled
interface between the machine and the environment. The
ultimate real-time behavior is reached when the application is
totally involved with the external environment. The ultimate
real-time penalty is 27 percent, based on available historical
data.

10.7 Requirements volatility
Requirements Volatility (RVOL) is one of the most sensitive cost estimating
parameters, both numerically and politically. The RVOL rating evaluates
the cost penalty due to expected frequency and scope of requirements
changes after the baseline Software Requirements Review, and projects the
impact of those changes on delivery cost and schedule. The magnitudes of

Table 10-7: Real time operation ratings

RTIM – Real Time Operation

Value Description

1.00 Less than 25% of source code devoted to real time
operations

1.09 Approx 50% of source code devoted to real time
operations

1.18 Approx 75% of source code devoted to real time
operations

1.27 Near 100% of source code devoted to real time
operations

114

the RVOL penalties are shown in Table 10-8. Scope changes
do not necessarily result in a change of baseline size. The cost
and schedule growth resulting from the RVOL parameter
includes the inefficiencies created by the redirections, but does
not include impacts due to size changes.

COCOMO uses a similar parameter with the following
categories: (1) essentially no changes, (2) small, non-critical
redirections, (3) occasional moderate redirections, (4) frequent
moderate or occasional redirections, and (5) frequent major
redirections. These categories are not as clear as the ones
posed in Table 10-8. COCOMO II did away with the cost
driver definition, added a new parameter, Requirements
Evolution and Volatility (REVL), with a new definition, and
moved the parameter to the software product size.

We use a definition that essentially establishes categories that cover the
magnitude of the instability with terms that are more appropriate and
conceptually easier to grasp. The parameter category definitions are defined
in Table 10-8.

The first category specifies that no requirements changes are possible or are
improbable. It has occurred more than a few times and is the only product
parameter that shows a decrease in development effort. No requirements
change is analogous to software being developed on a production line for a
well-defined product.

A familiar product is a product that has been produced by the developer
multiple times and is familiar to the customer providing the requirements. It
is an established product, but there will be small requirements changes even
though it is an established product line. There is no effort penalty in the
product characteristics for this type of development; however, there will be
application experience productivity gains in the basic technology area
discussed in Section 8.

A known product is a product that has been produced by the developer, and
the customer provides the requirements at least one time. The developer and
the customer understand the technology. The product will likely experience
some moderate requirements changes. The requirements changes will
increase the size of the software product. The size change is projected by the
size growth discussed in Section 7. The 15 percent penalty in the RVOL
rating accounts for turbulence in the development process that cannot be
accounted for in the size growth.

Technology exists, but is unfamiliar to the developer. It represents the state
in which the product has been produced before, but is unfamiliar to the
developer and/or the customer providing the product requirements. There
will be requirements changes. The effort penalty for this state is 29 percent.

The state in which the technology is new and unfamiliar to both the
developer and the customer providing the product requirements is true
research and development. There will be frequent requirements changes,
and some of them will likely be major. The effort penalty for this state is 46
percent, not counting the effort increase that will manifest itself as size
growth.

Table 10-8: Requirements volatility ratings

RVOL - Requirements Volatility

Value Description

0.93 Essentially no requirements changes

1.00 Familiar product – small non-critical redirections

1.15 Known product – occasional moderate redirections

1.29 Technology exists – unfamiliar to developer

1.46 Technology new – frequent major redirections

115

10.8 Security requirements
The Software Security Requirements (SECR) parameter evaluates the
development impact of application software security requirements. Apply
this parameter (value > 1.00) only if the software product is required to
implement the security level specified; that is, if the product is expected not
to satisfy, but to implement the specified security level.

The SECR rating is based on the Common Criteria58

The penalties listed in the table apply to situations
where the requirements must be satisfied in the
software development. It is possible for some of the
requirements to be satisfied within an underlying
operating system and have no impact on the software
itself. For example, software developed for a VAX
computing system can use, without explicitly
implementing, EAL 3 security assurance.

, an
internationally conceived and accepted security
evaluation standard. The effort penalties for each
Evaluation Assurance Level (EAL) rating are shown in
Table 10-9. The values in the table are for the software
development. Testing and certification costs occuring
after the completion of development are not included in
the ratings. High assurance levels above EAL 4
(required for cryptographic certification) will incur
additional certification costs.

The holy grail of high assurance for security is EAL 7 because it requires
rigorous, formal design and mathematical proof that the security policies of
the system are upheld through the development process. Since the EAL 7
rating requires a formal model and proof, a system of more than
approximately 5,000 lines of code is very difficult to evaluate. The penalty
value for EAL 7 is based on a limited set of historic data and is only
approximate. The penalty could be worse than the value given in Table 10-
9. On the other hand, the value could be lower, but not likely.

The previous standard used by most estimating systems is based on the
National Security Agency Orange Book, which defined security
requirements rating on a scale from A through D, with level A at the highest
level. The Orange Book ratings are included parenthetically with the
(roughly) equivalent CC EAL rating.

58 The Common Criteria for Information Technology Security Evaluation
(abbreviated as Common Criteria or CC) is an international standard (ISO/IEC
15408) for computer security

Table 10-9: Security requirements ratings

SECR – Security Requirements

Value Description

1.00 CC EAL 0 – No security requirements (D)

1.03 CC EAL 1 – Functional test

1.08 CC EAL 2 – Structural test (C1)

1.19 CC EAL 3 – Methodical test and check (C2)

1.34 CC EAL 4 – Methodical design, test and review (B1)

1.46 CC EAL 5 – Semiformal design and test (B2)

1.60 CC EAL 6 – Semiformal verification, design and test (B3)

2.35 CC EAL 7 – Formal verification, design and test (A)

116

Appendix A
Acronyms

2GL Second-Generation Language
3GL Third-Generation Language
4GL Fourth-Generation Language

AAF Adaptation Adjustment Factor
AAP Abbreviated Acquisition Program
ACAP Analyst Capability
ACAT Acquisition Category
ACT Annual Change Traffic
ACTD Advanced Concept Technology Demonstration
ADM Acquisition Decision Memorandum
ADPS Automatic Data Processing System
AEXP Application Experience
AFCAA Air Force Cost Analysis Agency
AFIT Air Force Institute of Technology
AFMC Air Force Materiel Command
AFP Adjusted Function Point
AIS Automated Information System
AoA Analysis of Alternatives
APEX Application Experience (COCOMO II)
API Application Program Interface
APSE Ada Programming Support Environment
ASD Assistant Secretary of Defense
AT&L Acquisition, Technology, and Logistics

β Entropy Factor
BF Backfire Factor (function point conversion)

C4I Command, Control, Communications, Computers, and Intelligence
C/A Contract Award
CA Complexity Attribute
CAD/CAM Computer-Aided Design/Computer-Aided Manufacturing
CAIG Cost Analysis Improvement Group
CARD Cost Analysis Requirements Description
CC Common Criteria
CD Concept Design
CDD Capabilities Description Document
CDR Critical Design Review
CDRL Contract Data Requirements List
CER Cost Estimating Relationships
CIO Chief Information Officer
CJCSI Chairman Joint Chiefs of Staff Instruction
CM Configuration Management
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
COCOMO COnstructive COst MOdel
COTS Commercial Off-the-Shelf
CPD Capabilities Production Document
CPLX Product complexity

117

CPLX1 PRICE-S parameter combining ACAP, AEXP,CEXP, and TOOL
CPLXM Management Complexity (PRICE-S)
CPU Central Processing Unit
CR Concept Refinement
CSC Computer Software Components
CSCI Computer Software Configuration Item
CSU Computer Software Unit
Ctb Basic technology constant
Cte Effective technology constant

D Software complexity
DAB Defense Acquisition Board
DATA Database size multiplier (COCOMO II)
DAU Defense Acquisition University
DB Database
DCAA Defense Contract Audit Agency
DET Data Element Type
DEXP Development System Experience
DISP Special Display Requirements
DoD Department of Defense
DoDD Department of Defense Directive
DoDI Department of Defense Instruction
DON Department of the Navy
DRPM Direct Reporting Program Manager
DRR Design Readiness Review
D/P Ratio of bytes in the database to SLOC in the program
DSI Delivered Source Instructions
DSLOC Delivered Source Lines of Code
DSYS Development System Complexity
DVOL Development System Volatility

EAF Effort Adjustment Factor
EAL Evaluation Assurance Level
ECP Engineering Change Proposal
ECS Embedded Computer System
EDM Engineering Development Model
EI External Inputs
EIF External Interfaces
EO External Outputs
EQ External Inquiries
ERP Enterprise Resource Program
ESC Electronic Systems Center (U.S. Air Force)
ESD Electronic Systems Division
ESLOC Effective Source Lines of Code
ETR Effective Technology Rating
EVMS Earned Value Management System

FAA Federal Aviation Administration
FAR Federal Acquisition Regulation
FP Function Point
FQA Formal Qualification Audit
FQR Final Qualification Review
FQT Formal Qualification Test
FRP Full-Rate Production
FRPDR Full-Rate Production Decision Review
FSP Fulltime Software Personnel

118

FTR File Type Reference
FY Fiscal Year

G&A General and Administrative
GSC General System Characteristic
GUI Graphical User Interface

HACS Hierarchical Autonomous Communication System
HOL Higher-Order Language
HOST Rehosting requirements
HPWT High Performance Work Teams
HTML Hypertext Markup Language
HWCI Hardware Configuration Item

I/O Input/Output
ICD Interface Control Document (software development)
 Initial Capabilities Document (acqusition)
ICE Independent Cost Estimate
IEEE Institute of Electrical and Electronics Engineers
IFPUG International Function Point Users Group
ILF Internal Logical Files
INTEGE Integration – External (PRICE-S)
INTEGI Integration – Internal (PRICE-S)
IPT Integrated Program Team
IOC Initial Operational Capability
IOT&E Initial Operation Test and Evaluation
IPD Integrated Product Development
ISPA International Society of Parametric Analysts
IV&V Independent Verification and Validation

JCIDS Joint Capabilities Integration and Development System
JROC Joint Requirement Oversight Council

KDSI Thousands of Delivered Source Instructions
KPP Key Performance Parameter
KSLOC Thousand Source Lines of Code

LCCE Life Cycle Cost Estimate
LEXP Language Experience
LMSC Lockheed Missiles and Space Company
LPPM Lines Per Person-Month
LRIP Low Rate Initial Production
LRU Line Replaceable Unit
LTEX Language and Tools Experience

M Maturity of the product at the time the estimate is made
MAIS Major Automated Information System
MBI Manpower Buildup Index (SLIM®)
MBP Manpower Buildup Parameter (SLIM®)
MCLS Multiple Security Classifications
MDA Milestone Decision Authority
MDAP Major Defense Acquisition Program
MEMC Memory Constraint
MIL-STD Military Standard
MIS Management Information Systems
MLI Machine-Level Instruction

119

MM Man-Months
MODP Modern Programming Practices
MORG Multiple Development Organizations
MULT Multiple Development Sites

n/a Not Applicable
NA Non-linear Analysis
NASA/JSC National Aeronautics and Space Administration at Johnson Space Center
NEPA National Environmental Policy Act
NCCA Naval Center for Cost Analysis
NII Networks and Information Integration

O&S Operations and Support
OO Object-Oriented
OOD Object-Oriented Design
OS Operating System
OSD Office of the Secretary of Defense
OT&E Operational Test and Evaluation
OTA Office of Technology Assessment

P&D Production and Deployment
PCA Physical Configuration Audit
PCAP Programmer Capability
PCON Personnel Continuity
PDL Program Design Language
PDR Preliminary Design Review
PEO Project Executive Officer
PEXP Practices Experience
PF Productivity Factor
PI Productivity Index (SLIM®)
PIMP Process Improvement parameter
PLAT Platform parameter (REVIC)
PLTFM Platform parameter (PRICE-S)
PM Person-Month
POE Program Office Estimate
PROFAC Productivity Factor (PRICE-S)
PS Processing Step
PSE Program Support Environment
PVOL Practices and Methods Volatility Parameter
PWB Programmer’s Workbench
PY Person-Year

QA Quality Assurance
QSM Quantitative Software Management
QUAL Product quality requirements

RAD Rapid Application Development
RD Redesign
RDED Resource Dedication
RDT&E Research, Development, Test and Evaluation
RELY Required Software Reliability
RESP Terminal response time
RET Record Element Type
REVIC Ray’s Enhanced Version of Intermediate COCOMO or Revised Intermediate COCOMO
REVL Requirements Evolution and Volatility
RFP Request for Proposal

120

RI Re-implementation
RLOC Resource Support Location
ROM Read-Only Memory
RT Retest
RTIM Real-Time Operating Requirements
RUSE Required Reuse
RVOL Requirements Volatility

SAF Size Adjustment Factor
SAR Software Acceptance Review
SCEA Society of Cost Estimating and Analysis
SCED Schedule Constraint
SDD Software Design Document
SDP Software Development Plan
SDR System Design Review
SECNAV Secretary of the Navy (U.S)
SECR Software Security Requirements
SECU DoD security classification parameter (REVIC)
SEER-SEMTM System Evaluation and Estimation of Resources – Software Estimating Model (now known as

SEERTM for Software)
SEI Software Engineering Institute
SER Size Estimating Relationship
SICAL Size Calibration Factor
SITE Multiple development sites parameter (REVIC)
SLIM® Software Lifecycle Model
SLOC Source Lines of Code
SMC Space and Missile Systems Center
SoS System-of-Systems
SOW Statement of Work
SP Structured Programming
SPEC System Specification Level
SPR Software Productivity Research
SPS Software Product Specification
SRR Software Requirements Review
SRS Software Requirements Specification
SS Semantic Statement
SSCAG Space Systems Cost Analysis Group
SSR Software Specification Review
STOR Main storage constraint attribute (COCOMO II)
STP Software Test Plan
SU Software Unit
S/W Software
SWDB Software Database
SWDM Software Development Method
SYSCOM Systems Command

TD Technology Development
TEMP Test and Evaluation Master Plan
TEST Product test requirements
TEXP Target System Experience
TIMC Product timing constraints
TIME Execution time constraint attribute (COCOMO II)
TOC Total Ownership Cost
TOOL Automated, modern tool support
TRR Test Readiness Review
TURN Hardcopy turnaround time

121

TVOL Target System Volatility

UFP Unadjusted Function Point
UML Unified Modeling Language
USAF/SMC U.S. Air Force Space & Missile Systems Center
USD Under Secretary of Defense
UTIL Utilization, percentage of hardware memory or processing speed utilized by the Software

(PRICE-S), similar to TIMC

V&V Verification and Validation
VAF Value Adjustment Factor (function points)
VEXP Virtual Machine Experience
VHOL Very High-Order Language
VIRT Virtual Machine Volatility

WBS Work Breakdown Structure

122

Appendix B
Terminology

ADAPTATION ADJUSTMENT FACTOR. Accounts for the effort expended in the development process that does
not directly produce product source code. The size adjustment factor is applied to the reused and COTS components
of the software system. See also Size Adjustment Factor.

ADJUSTED FUNCTION POINT. Adjusted function points modify the function point count to account for
variations in software size related to atypical performance requirements and/or operating environment.

AGILE DEVELOPMENT. The Agile development strategy develops the Computer Software Configuration Item
(CSCI) as a continual refinement of the requirements, starting from a simple beginning to a complete product.
There are many development approaches that fall under the Agile umbrella.
ALGORITHM. A set of well-defined rules or processes for solving a problem in a definite sequence.

APPLICATION SOFTWARE. Software that implements the operational capabilities of a system.

ARCHITECTURE DESIGN. The second step in the software development process. The architecture contains
definitions for each of the Computer Software Components (CSCs) contained in the product. The definition
contains the requirements allocated to the CSC and the internal interfaces between the CSCs and the interfaces to the
external system. Formal software plans for the CSCs and the higher-level CSCI are also developed in this activity.
The activity culminates in a Preliminary Design Review to determine the readiness for advancement to the detail
design phase.

ASSEMBLY LANGUAGE. A symbolic representation of the numerical machine code and other constants needed
to program a particular processor (CPU).

BACKFIRE. A process used to convert between function points and source lines of code (SLOC). The process
produces a functional total size.

BASIC TECHNOLOGY CONSTANT. A measure of the raw software development capability of an organization
in terms of analyst and programmer capabilities, application experience, use of modern practices and tools, and
access to the development system. This constant does not include impacts of the software product-specific
constraints. The range of the basic technology constant is between 2,000 and 20,000.

BIT. Unit of information; contraction of binary digit.

BYTE. Abbreviation for binary term, a unit of storage capable of holding a single character. A byte can be 5 to 12
bits based on the CPU as an alphabet character. The most common representation of a byte is 8 bits.

CAPABILITY. A major element of the basic technology constant. Capability can be outlined as a measure of
motivation, team approaches to development, working environment, problem solving skills, and software
engineering ability.

CODE AND UNIT TEST. The fourth step in the software development process. Software Product Specifications
are drafted and the production code is written for each Computer Software Unit (CSU). The deliverable source code
is thoroughly tested since this is the one level that allows direct access to the code. When the unit testing is
successfully completed, the CSU is made available for integration with the parent CSC.

COHESION. An internal property that describes the degree to which elements such as program statements and
declarations are related; the internal “glue” with which a component is constructed. The more cohesive a
component, the more related are the internal parts of the component to each other and the overall purpose. In other
words, a component is cohesive if all elements of the component are directed toward and essential for performing a
single task. A common design goal is to make each component as cohesive as possible or do one thing well and not
do anything else.

123

COMPILER. A program that translates source code into object code. The compiler derives its name from the way
it works, looking at the entire piece of source code and collecting and reorganizing the instructions.

COMPLEXITY. The degree to which a system or component has a design or implementation that is difficult to
understand and verify. In lay terms, complexity is a function of the internal logic, the number and intricacy of the
interfaces, and the understandability of the architecture and code.

COMPONENT-LEVEL ESTIMATE. The component-level (or third-order) estimate is the most comprehensive
estimate type. This model combines the effective software product size with a series of environment and product
adjustments (defining the development organization production capability and product characteristics) to obtain the
development effort or cost. CSCIs are the primary basis of this estimate.

COMPUTER DATA DEFINITIONS. A statement of the characteristics of basic elements of information operated
upon by hardware in responding to computer instructions. These characteristics may include – but are not limited to
– type, range, structure, and value.

COMPUTER SOFTWARE. Computer instructions or data. Anything that can be stored electronically is software.
Software is often divided into two categories: 1) systems software, including the operating system and all the
utilities that enable the computer to function, and 2) applications software, which includes programs that do real
work for users.

COMPUTER SOFTWARE COMPONENT. A functional or logically distinct part of a CSCI. CSCs may be top-
level or lower-level. CSCs may be further decomposed into other CSCs and CSUs.

COMPUTER SOFTWARE CONFIGURATION ITEM. See Configuration Item.

COMPUTER SOFTWARE UNIT. An element specified in design of a CSC that is separately testable.

CONFIGURATION IDENTIFICATION. The current approved or conditionally approved technical documentation
for a configuration item as set forth in specifications, drawings, and associated lists; the documents referenced
therein.

CONFIGURATION ITEM. Hardware or software, or an aggregation of both, designated by the procuring agency
for configuration management. A CSCI is normally defined by a set of requirements documented in a SRS and an
ICD or an interface requirements specification.

COTS. Short for Commercial Off-the-Shelf, an adjective that describes software or hardware products that are
ready-made and available for sale to the general public. COTS software behavior can be characterized in terms of
an input set, an output set, and a relationship (hopefully simple) between the two sets. COTS software is a black-
box software element for which the countable source code is not known. COTS products are designed to be
implemented easily into existing systems without the need for customization.

COUPLING. An external property characterizing the interdependence between two or more modules in a program.
Components can be dependent upon each other because of references, passing data, control, or interfaces. The
design goal is not necessarily complete independence, but rather to keep the degree of coupling as low as possible.

CSCI ACCEPTANCE TEST. The final step in the full-scale development of the CSCI. The test evaluates the
performance of the entire software product (CSCI) against the formal software requirements allocated during the
system requirements analysis and approved at the SRR. The CSCI Acceptance Test does not include system
integration or user operational tests.

DETAIL DESIGN. The third step in the software development process. The detail design is developed by
allocating requirements to each CSC and by establishing the design requirements for each CSU. The activity
produces a design for each CSU as well as internal interfaces between CSUs and interfaces to the higher level CSCI.
The activity concludes with a formal CDR which reviews the design, test plans, and critical design issues that arise
during the activity.

DEVELOPMENT CONFIGURATION. The contractor’s software development and associated technical
documentation that defines the evolving configuration of a CSCI during the development phase. It is under the
development contractor’s configuration control and describes the software configuration at any stage of the design,
coding, and testing effort. Any item in the Developmental Configuration may be stored on electronic media.

http://www.webopedia.com/TERM/c/compiler.html##�

124

DEVELOPMENT ENVIRONMENT. The environment available to the software development team, including the
practices, processes, facilities, development platform, as well as the personnel capability, experience, and
motivation.

DEVELOPMENT PLATFORM. Hardware and software tools and computing system.

DRIVER. A piece of software written to accommodate testing of a module before all of its surrounding software is
completed. The driver generates all of the inputs for a module. It may do this according to a preprogrammed
sequence or be interactive with the tester.

EFFECTIVE SIZE. A measure of the size of the software product that includes the new functionality, the modified
functionality, and the energy expended in the development process that does not contribute to the software product.
This includes reverse engineering and regression testing of the reused software, and the evaluation and testing of
COTS products.

EFFECTIVE SOURCE LINE OF CODE. Incorporates a combination of new SLOC, existing code modified to
meet new requirements, and the effort impact of reverse engineering and regression testing of unmodified code and
reusable software components.

EFFECTIVE TECHNOLOGY CONSTANT. This constant combines the basic technology constant with the
impacts of the development environment affected by the specific software development and constraints on the
development contributed by the product characteristics.

EFFICIENCY. A measure of the relative number of machine level instructions produced by a given compiler in
processing a given source program.

EMBEDDED COMPUTER SYSTEM (ECS). A computer system that is integral to an electro-mechanical system
such as a combat weapon, tactical system, aircraft, ship, missile, spacecraft, certain command and control systems,
civilian systems such as rapid transit systems and the like. Embedded computer systems are considered different
than automatic data processing systems primarily in the context of how they are developed, acquired, and operated
in a using system. The key attributes of an embedded computer system are: (1) It is a computer system that is
physically incorporated into a larger system whose primary function is not data processing; (2) It is integral from a
design, procurement, or operations viewpoint; and (3) Its output generally includes information, computer control
signals, and computer data.

ENTROPY. An index of the degree in which the total energy of a thermodynamic system is uniformly distributed
and is, as a result, unavailable for conversion into work. Entropy in software development amounts to the energy
expended in the process without contributing to the software product.

EVOLUTIONARY DEVELOPMENT. In evolutionary development, the software requirements for the first version
of the product are established; the product is developed and delivered to the customer. At some point during
development or after the first product delivery, the requirements for a second, third (and so forth) product release are
defined and implemented for the next release.

EXPANSION RATIO. The ratio of a machine level instruction (object code) to higher-order language instructions
(source code).

FIRMWARE. Software (programs or data) that has been written into read-only memory (ROM). Firmware is a
combination of software and hardware. ROMs, PROMs, and EPROMs that have data or programs recorded on them
are firmware.

FOURTH-GENERATION LANGUAGE. Often abbreviated 4GL, fourth-generation languages are programming
languages closer to human languages than typical high-level programming languages. Most 4GLs are used to access
databases. The other four generations of computer languages are: First Generation-machine Language, Second
Generation-assembly Language, Third Generation-high-level programming Languages such as FORTRAN, C, C++,
and Java, and Fifth Generation Languages used for artificial intelligence and neural networks.

FULL-SCALE DEVELOPMENT. All effort expended to development of the software product commencing with
the Software Requirements Review (SRR) and continuing through the Final Qualification Test (FQT). This includes
architecture development, detail design, code and unit test, internal software integration, and customer acceptance
testing. Development time includes the period between the conclusion of SRR through FQT.

http://www.webopedia.com/TERM/F/fourth_generation_language.html##�

125

FUNCTION POINT. Function Point (FP) analysis is a method for predicting the total SIZE of a software system.
FPs measure software size by quantifying the system functionality provided to the estimator based primarily on the
system logical design.

GENERAL SYSTEM CHARACTERISTICS. A set of 14 adjustments used to determine the overall Value
Adjustment Factor (VAF) in the adjusted function point calculation.

GROWTH. The expected increase in software size during software development. Growth is caused by a number of
factors: requirements volatility, projection errors, and functionality changes. Growth is determined by complexity,
project maturity, and the distribution of new and reused source code.

HIGHER-ORDER LANGUAGE (HOL). A computer language using human-like language to define machine code
operations. A compiler translates HOL statements into machine code (e.g., FORTRAN, COBOL, BASIC, JOVIAL,
ADA).

INCREMENTAL DEVELOPMENT. Requirements are allocated functionally to each increment at the beginning of
the CSCI development. The full functionality is not available until completion of the final increment. Requirements
allocation can be planned to provide partial functionality at the completion of each increment. However, the full
CSCI functionality and the ability to test the complete CSCI requirements cannot be completed until all of the
incremental developments are complete.

INPUT/OUTPUT (I/O) DRIVER. A piece of software, generally in subroutine format, that provides the unique
interface necessary to communicate with a specific peripheral device.

INSTRUCTION. A basic command. The term instruction is often used to describe the most rudimentary
programming commands. For example, a computer's instruction set is the list of all the basic commands in the
computer's machine language. An instruction also refers to a command in higher-order languages.

INSTRUCTION SET ARCHITECTURE (ISA). The attributes of a digital computer or processor as might be seen
by a machine (assembly) language programmer; i.e., the conceptual structure and functional behavior, distinct from
the organization of the flow and controls, logic design, and physical implementation.

INTERPRETER. An interpreter translates high-level instructions into an intermediate form, which it then executes.
In contrast, a compiler translates high-level instructions directly into machine language. Interpreters are sometimes
used during the development of a program, when a programmer wants to add small sections one at a time and test
them quickly. In addition, interpreters are often used in education because they allow students to program
interactively.

LANGUAGE. A set of symbols, conventions, and rules used to convey information to a computer. Written
languages use symbols (that is, characters) to build words. The entire set of words is the language's vocabulary.
The ways in which the words can be meaningfully combined is defined by the language's syntax and grammar. The
actual meaning of words and combinations of words is defined by the language's semantics.

LIFE CYCLE. The period of time from the inception of software requirements to development, maintenance, and
destruction.

MACHINE LANGUAGE. A first-generation programming language, also called “assembly language;” actual
language used by the computer in performing operations; refers to binary or actual codes.

MODIFIED CODE. Pre-developed code that is to be modified before it can be incorporated into the software
component to meet a stated requirement.

MODULAR. A software design characteristic that organizes the software into limited aggregates of data and
contiguous code that performs identifiable functions. Good modular code has the attributes of low coupling and
high internal cohesion.

NEW CODE. Newly developed software.

NON-DEVELOPMENTAL SOFTWARE (NDS). Deliverable software that is not developed under the contract but
is provided by the contractor, the government, or a third party. NDS may be referred to as reusable software,
government-furnished software, or commercially available software, depending on its source.

OBJECT. Generally, any item that can be individually selected and manipulated. This can include shapes and
pictures that appear on a display screen as well as less tangible software entities. In object-oriented programming,

http://www.webopedia.com/TERM/i/instruction.html##�
http://www.webopedia.com/TERM/i/interpreter.html##�

126

TIME

STAFFPROBS

P(0)

Problems to be solved

Learning curve

people = f(t) Rayleigh curve

TIME

STAFFPROBS

P(0)

Problems to be solved

Learning curve

people = f(t) Rayleigh curve

for example, an object is a self-contained entity that consists of both data and procedures to manipulate the data.
Objects generally exhibit a behavior defined as functional code.

OBJECT PROGRAM. A first-generation (machine-code) program that can be executed by the computer produced
from the automatic translation of a source program.

OPERATING SYSTEM. Operating systems perform basic tasks, such as recognizing input from the keyboard,
sending output to the display screen, keeping track of files and directories on the disk, and controlling peripheral
devices such as disk drives and printers. For large systems, the operating system is also responsible for security, and
ensuring that unauthorized users do not access the system. Operating systems provide a software platform on top of
which other programs, called application programs, can function. The application programs must be written to run
on top of a particular operating system.

OPERATIONAL SOFTWARE. The software that operates in embedded computers.

PERSON-MONTH (PM). The average effort contributed by a single person over a one-month period. A month is
assumed to be 152 hours by most estimating tools.

PRODUCTIVITY. The ratio of effective source code size and full-scale development effort. Effort includes all
personnel costs attributed to the software project development from the start of architecture design through the
completion of the final qualification test. Productivity is sometimes specified in person-hours per ESLOC.

PRODUCTIVITY FACTOR. A multiplication factor (ESLOC/PM) used for projecting software development
effort. The factor is a function of product type and effective size. The productivity factor is commonly determined
by the product type, historic developer capability, or both, derived from past development projects. The
productivity factor is sometimes specified in person-hours per ESLOC.

PRODUCTIVITY INDEX (PI). Contains the impacts of product characteristics and the development environment, as
well as the domain experience and capability rating for the organization, much like the effective technology
constant. PI also subsumes the application complexity impact and the effects of software reuse; that is, the impacts
of reverse engineering and regression testing are contained in the PI value.

PROGRAM. An organized list of instructions that, when executed, causes the computer to behave in a
predetermined manner. Without programs, computers are useless. A program is like a recipe. It contains a list of
ingredients (called variables) and a list of directions (called statements) that tell the computer what to do with the
variables. The variables can represent numeric data, text, or graphical images. Eventually, every program must be
translated into a machine language that the computer can understand. This translation is performed by compilers,
interpreters, and assemblers.

QUALITY PLAN. Contains an overview of the Quality Assurance and Test Plan, which verifies that the product
performs in accordance with the requirements specification and meets all pertinent customer requirements. The
Quality Plan is part of the Software Development Plan.

RAYLEIGH STAFFING PROFILE. A roughly bell-
shaped curve (shown in graphic) that represents the
buildup and decline of development staff in a software
lifecycle. An IBM study showed the maximum staffing
rate for successful research and development projects
never exceeded the maximum staffing rate defined for that
type of project. Exceeding the maximum staffing rate
correlated strongly with project failure. The decaying
exponential curve represents the number of problems
remaining to be solved. Combining the two curves produces
the Rayleigh staffing profile.

REAL-TIME. Occurring immediately. Real-time operating systems respond to input immediately. The term
evolves from the definition of a real-time system. A real-time system interacts with the outside environment; thus,
the term refers to control or behavior of the system. For example, turn the alarm on when the temperature exceeds
451 degrees Fahrenheit. The sensor is in the external environment, the response is immediate. This definition
should not be confused with time-constrained, which requires that a process be completed within a specified time.

Figure B-1: Rayleigh staffing profile

http://www.webopedia.com/TERM/O/input.htm�
http://www.webopedia.com/TERM/O/keyboard.htm�
http://www.webopedia.com/TERM/O/output.htm�
http://www.webopedia.com/TERM/O/display_screen.htm�
http://www.webopedia.com/TERM/O/file.htm�
http://www.webopedia.com/TERM/O/directory.htm�
http://www.webopedia.com/TERM/O/disk.htm�
http://www.webopedia.com/TERM/O/peripheral_device.htm�
http://www.webopedia.com/TERM/O/peripheral_device.htm�
http://www.webopedia.com/TERM/O/disk_drive.htm�
http://www.webopedia.com/TERM/O/printer.htm�
http://www.webopedia.com/TERM/O/operating_system.html##�
http://www.webopedia.com/TERM/O/security.htm�
http://www.webopedia.com/TERM/O/access.htm�
http://www.webopedia.com/TERM/p/program.html##�

127

RELEASE. A configuration management action whereby a particular version of software is made available for a
specific purpose (e.g., released for test). Release does not necessarily mean free from defects.

REUSED CODE. Pre-existing code than can be incorporated into a software component with little or no change.
The theoretical cost impact of reused code is zero; however, the hidden costs of reverse engineering and regression
testing are practical penalties that must be accounted for in reuse.

SECURITY. Software security levels are specified by the Common Criteria Evaluation Assurance Levels (EAL).
The assurance levels range from EAL1 for software where security is not viewed as serious to EAL7 for software
applications with extremely high risk operation and/or where the value of the assets justifies the high certification
costs.

SIZE ADJUSTMENT FACTOR. Accounts for the effort expended in the development process that does not
directly produce product source code. The size adjustment factor is applied to the reused and COTS components of
the software system. See also Adaptation Adjustment Factor.

SOFTWARE. See Computer Software.

SOFTWARE DESIGN DOCUMENT (SDD). Describes the complete design of a CSCI. It describes the CSCI as
composed of Computer Software Components (CSCs) and CSUs. The SDD describes the allocation of requirements
from a CSCI to its CSCs and CSUs. Prior to the Preliminary Design Review, the SDD is entered into the
Developmental Configuration for the CSCI. Upon completion of the Physical Configuration Audit, the SDD, as part
of the Software Product Specification, is entered into the Product Baseline for the CSCI.

SOFTWARE DEVELOPMENT PLAN. Describes the dates, milestones, and deliverables that will drive the
development project. It defines who is responsible for doing what and by when. It also describes how the important
development activities, such as reviews and testing, will be performed. The activities, deliverables, and reviews are
described for each step of the development process.

SOFTWARE DOCUMENTATION. Technical data or information, including computer listings and printouts,
which document the requirements, design, or details of the computer software, explains the capabilities and
limitations of the software, or provides operating instructions for using or supporting computer software during the
software’s operational life.

SOFTWARE ENGINEERING ENVIRONMENT. The set of tools, firmware, and hardware necessary to perform
the software engineering effort. The tools may include (but are not limited to) compilers, assemblers, linkers,
loaders, operating systems, debuggers, simulators, emulators, test tools, documentation tools, and database
management systems(s).

SOFTWARE MAINTENANCE. Also known as software support. Maintenance focuses on change associated with
error correction, adaptation required as the software’s environment evolves, enhancement changes brought about by
changing software requirements, and preventative (software re-engineering) changes needed to make the software
easier to correct, adapt, or enhance. Each software change degrades the coupling and cohesion of the product
making periodic preventative maintenance necessary. Maintenance includes knowledge retention of the software and
support environment.

SOFTWARE QUALITY. A judgment by customers or users of a product or service; the extent to which the
customers or users believe the product or service meets or surpasses their needs and expectations.

SOURCE LINE OF CODE (SLOC). A measure of software size. A simple, concise definition of a SLOC is any
software statement that must be designed, documented, and tested. The three criteria – designed, documented, and
tested – must be satisfied in each counted SLOC.

SPIRAL DEVELOPMENT. A risk-driven approach that includes a series of evolving prototypes of the software
product culminating in an operational prototype that is the basis for a formal software development.

SUPPORT SOFTWARE. Offline software. For example: development and diagnostic tools, simulation and/or
training, maintenance, site support, delivered test software, and report generators.

SYSTEM-LEVEL ESTIMATE. The system level, or first-order, estimate is the most rudimentary estimate type.
This model is simply a productivity constant (defining the development organization production capability in terms
of arbitrary production units) multiplied by the software product effective size to obtain the development effort or
cost.

128

SYSTEM SOFTWARE. Software designed for a specific computer system or family of computer systems to
facilitate the operation and maintenance of the computer system and associated programs. For example: operating
system, communications, computer system health and status, security, and fault tolerance.

TRANSACTION. A group of data and operations defined by the application domain. Transactions must have the
property of crossing the application boundary. A unique transaction is identified by a unique set of data contents, a
unique source and/or destination, or a unique set of operations.

UNADJUSTED FUNCTION POINT (UFP). The UFP count relates only to the total functional size of an average
software system with the requirements and structure defined by the FP count. There have been no adjustments for
the system type or development and operational environments.

VALUE ADJUSTMENT FACTOR. The mechanism used by the FP methodology to adjust the software size
projection in response to special requirements placed on the software.

WATERFALL. The classic software life-cycle model suggests a systematic, sequential approach to software
development that begins at the system level and progresses through a series of steps: analysis, design, code, test,
integration, and support. The waterfall model outlines steps that are part of the conventional engineering approach
to solving problems.

WORD. In programming, the natural data size of a computer. The size of a word varies from one computer to
another, depending on the CPU. For computers with a 16-bit CPU, a word is 16 bits (2 bytes). On large CPUs, a
word can be as long as 64 bits (8 bytes).

http://webopedia.com/TERM/w/word2.html##�

129

Appendix C
Bibliography

Abdel-Hamid, T.K., and S.E. Madnick. “Impact of Schedule Estimation on Software Project Behavior.” IEEE
Software

Abdel-Hamid, T.K., and S.E. Madnick. “Lessons Learned From Modeling the Dynamics of Software Development.”

. July 1986: 70-75.

Communications of the ACM

Abdel-Hamid, T.K. “Investigating the Cost/Schedule Trade-Off in Software Development.”

. 32(12) (1989): 1426-1438.

IEEE Software

Abdel-Hamid, T.K., and S.E. Madnick.

. Jan.
1990: 97-105.

Software Project Dynamics: An Integrated Approach

Acosta, E.O., and D.H. Golub. “Early Experience in Estimating Embedded Software.”

. Englewood Cliffs,
NJ: Prentice-Hall, 1971.

Journal of Parametrics

AFMC Electronic Systems Center. “Cost Analysis: Software Factors and Estimating Relationships.” ESCP 173-2B.
Hanscom, AFB, MA:1994.

. 8(1):
69-75.

Albanese, Jr., F. The Application of Regression Based and Function Point Software Sizing Techniques to Air Force
Programs

Alberts, D.S, and A.D. Cormier.

. Dayton, OH: Air Force Institute of Technology, 1988.

Software Sizing With Archetypes and Expert Opinion

Albrecht, A.J.

. Proc. of the ISPA Annual
Conference. 1987: 458-523.

Measuring Application Development Productivity

Albrecht, A.J., and J.E. Gaffney. “Software Function, Source Lines of Code, and Development Effort Prediction: A
Software Science Validation.”

. Proc. of the Joint Share/Guide/IBM Application
Development Symposium. 1979: 83-92.

IEEE Transactions on Software Engineering

Apgar, H. “Software Standard Module Estimating.”

. SE-9 (6) Nov.1983.

Journal of Parametrics

Barnes, B.H., and T.B. Bollinger. “Making Reuse Cost-Effective.”

. 1(4) 1982: 13-23.

IEEE Software

Basili, V.R., and M.V. Zelkowitz.

. Jan. 1991: 13-24.

Analyzing Medium-Scale Software Development

Basili, V.R., et al. “A Quantitative Analysis of a Software Development in Ada.”

. Proc. of the Third International
Conf. on Software Engineering. 1978: 116-123.

Univ. Maryland Computer Science
Dept. Tech Report

Baskette, J. “Life Cycle Analysis of an Ada Project.”

. TR-1403 (1984).

IEEE Software

Behrens, C.A. “Measuring the Productivity of Computer Systems Development Activities With Function Points.”

. 4(1) 1987: 40-47.

IEEE Trans. Software Eng

Belady, L.M., and M.M. Lehman. “Characteristics of Large Systems.”

. Se-9(6) 1983: 648-652.

Research Directions in Software Technology

Bisignani, M.E., and T.S. Reed. “Software Security Costing Issues.”

.
Cambridge, MA: MIT Press, 1979.

Journal of Parametrics

Black, R.K.E., and R. Katz.

. 7(4) 1987: 30-50.

Effects of Modern Programming Practices on Software Development Costs

Boehm, B.W., and P.N. Papaccio. “Understanding and Controlling Software Costs.”

. Proc. of the
IEEE Compcon Conference. Sept. 1977: 250-253.

IEEE Trans. Software
Engineering

Boehm, B.W., et al.

. 14(10). 1988: 1462-1477.

Software Cost Estimation With COCOMO II. Upper Saddle River, NJ: Prentice Hall, 2000.

130

Boehm, B.W. “A Spiral Model of Software Development and Enhancement.” IEEE Computer

Boehm, B.W. “Improving Software Productivity.”

. May 1988: 61-72.

IEEE Computer

Boehm, B.W. “Industrial Software Metrics Top 10 List.”

. Sept. 1987: 43-57.

IEEE Software

Boehm, B.W. “Software Engineering.”

. Sept. 1987: 84-85.

IEEE Transactions on Computers

Boehm, B.W.

. Dec. 1976: 1226-1241.

Software Engineering Economics

Boehm, B.W. “Software Risk Management: Principles and Practices.”

. Englewood Cliffs, NJ: Prentice-Hall, 1981.

IEEE Software

Boehm, B.W. “Software Engineering Economics.”

. Jan. 1991: 32-41.

IEEE Transactions on Software Engineering

Boehm, B.W. “Understanding and Controlling Software Costs.”

. Se-10(1). 1984: 4-
21.

Journal of Parametrics

Boehm, B.W., et al. “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0.”

. 8(1). 1988: 32-68.

Annals of Software
Engineering 1

Booch, Grady.

. 1995: 295-321.

Object-Oriented Analysis and Design With Applications

Branyan, E.L, and R. Rambo. “Establishment and Validation of Software Metric Factors.”

. 2nd ed. Benjamin-Cummings. 1994.

Proc. ISPA Annual
Conference

Brooks, F.P.

. 1986: 562-592.

The Mythical Man-Month

Cheadle, W.G. “Ada Parametric Sizing, Costing and Scheduling.”

. Reading, MA: Addison-Wesley, 1978.

Journal of Parametrics

Cheadle, W.G.

. 7(3). 1987: 24-43.

DoD-STD-2167 Impacts on Software Development

CMMI Product Team. “Capability Maturity Model Integration for Systems Engineering and Software Engineering
(CMMI-SE/SW) Staged Representation Version 1.1.”

. Proc. of the Annual ISPA Conference. 1986:
67-114.

CMU/SEI-2002-TR-002. Software Engineering Institute.
Pittsburgh, PA: Dec. 2001.

COCOMO 2.0 Reference Manual (Version 2.0.6). University of Southern California, 1996.

COSTAR User’s Manual (Version 7.00)

Davis, A.

. Amherst, NH: Sofstar Systems. 2008.

Software Requirements Analysis and Specification

Defense Acquisition University. “Defense Acquisition Guidebook.” Nov. 2006.

. Englewood Cliffs, NJ: Prentice-Hall, Inc. 1990.

Defense Acquisition University. “Fundamentals of System Acquisition Management (ACQ 101).” Sept. 2005.

DeMarco, Tom. Controlling Software Projects.

DoD Directive 5000.1. “The Defense Acquisition System.” May 12, 2003

 Englewood Cliffs, NJ: Prentice-Hall, 1982.

DoD Directive 5000.4. “Cost Analysis Group.” Nov. 24, 1992

DoD Instruction 5000.2. “Operation of the Defense Acquisition System.” May 12, 2003.

Dreger, J.B. Function Point Analysis

Fenick, S. “Implementing Management Metrics: An Army Program.”

. Englewood Cliffs, N.J: Prentice-Hall, 1989.

IEEE Software

Firesmith, D.G. “Mixing Apples and Oranges or What Is an Ada Line of Code Anyway?”

. 1990: 65-72.

Ada Letters

Fischman, L., et al.

. 8(5). 1988:
110-112.

Automated Software Project Size Estimation via Use Case Points (Final Technical Report)

Fitsos, G.P. “Elements of Software Science.”

. El
Segundo, CA: Galorath, Inc., Apr. 2002.

IBM Tech. Report

Freburger, K., and V.R. Basili.

. TR 02.900, Santa Teresa: IBM, 1982.

The Software Engineering Laboratory: Relationship Equation

Funch, P.G.

. NASA Software
Engineering Laboratory. SEL-79-002, 1979.

Software Cost Database. Mitre Corporation. MTR 10329, 1987.

131

Gaffney, Jr., J.E. “An Economics Foundation for Software Reuse.” AIAA Computers in Aerospace Conference VII

Gaffney, Jr., J.E. “Estimation of Software Code Size Based on Quantitative Aspects of Function (With Application
of Expert System Technology).”

.
1989: 351-360.

Journal of Parametrics

Gaffney, Jr., J.E.

. 4(3):23. 1984.

Software Reuse Economics, Some Parametric Models and Application

Gaffney, Jr., J.E., and Richard Wehrling.

. Proc. of the ISPA Annual
Conf. 1990: 261-263.

Estimating Software Size From Counts of Externals, A Generalization of
Function Points

Garmus, David, and David Herron.

. Proc.of the Thirteenth Annual International Society of Parametric Analysts Conference. New
Orleans, LA, 1991.

Function Point Analysis

Garnus, David, ed.

. Boston, MA: Addison-Wesley, 2001.

IFPUG Function Point Counting Practices Manual (Release 4.2)

Garvey, P.R. “Measuring Uncertainty in a Software Development Effort Estimate.”

. Westerville, OH: IFPUG, May
2004.

Journal of Parametrics

Gayek, J.E., L.G. Long, K.D. Bell, R.M. Hsu, R.K. and Larson.

. 6(1)
1986: 72-77.

Software Cost and Productivity Model

Gibbs, J. “A Software Support Cost Model for Military Systems.”

. The
Aerospace Corporation (2004).

NATO Symposium

Gilb, T. “Estimating Software Attributes. Some Unconventional Points of View.”

. 24-25 Oct. 2001.

Journal of Parametrics

Gilb, T.

. 7(1) 1987:
79-89.

Principles of Software Engineering Management

Grady, R.B., and D.L. Caswell.

. New York, NY: Addison-Wesley, 1988.

The Use of Software Metrics to Improve Project Estimation

Grady, R.B., and D.L. Caswell.

. Proc. of the ISPA
Annual Conference. (1985): 128-144.

Software Metrics: Establishing A Company-Wide Program

Grubb, Penny, and A.A. Takang. “Software Maintenance, Concepts, and Practice,” Hackensack, NJ: World
Scientific Publishing Co., 2005.

. Englewood Cliffs, NJ:
Prentice-Hall, 1987: 288.

Grucza, Jack. How to Establish a Metrics Database for Software Estimating and Management

Harmon, B.R., et al. “Military Tactical Aircraft Development Costs, Vol. I Summary Report.”

. Proc. of the ISPA
Conference. 1997.

Institute for Defense
Analysis, Paper

Helmer, O.

. R-339, 1988.

Social Technology

Herd, J.R., J.N. Postak, We. E. Russell, and K.R. Stewart. “Software Cost Estimation Study – Final Technical
Report.” RADC-TR-77-220, Vol. 1, Doty Associates, Inc., Rockville, MD. June 1977.

. New York: Basic Books. 1966.

Hihn, J.M., S. Malhotra, and M. Malhotra. “The Impact of Volatility and the Structure of Organizations on Software
Development Costs.” Journal of Parametrics

Holchin, B.

. 10(3), 1990: 65-81.

Code Growth Study

Humphrey, W.S., W.L. Sweet, et al. “A Method for Assessing the Software Engineering Capability of Contractors.”

. 23 Dec. 1991.

Software Engineering Institute Tech. Report

Humphrey, Watts S.

. CMU/SEI-87-Tr-23, ESD/Tr-87-186, 1987.

Managing the Software Process

IEEE-STD-729.

. Reading, MA: Addison-Wesley, 1990.

IEEE Standard Glossary of Software Engineering Terms

IEEE-STD-12207

. 1983.

IEEE Standard Glossary of Software Engineering Terms

IEEE.

. 1983.

IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY:
1990.

132

International Function Point Users Group. Function Point Counting Practices Manual (Release 4.2)

ISO/IEC 12207.

. Waterville,
OH: International Function Point Users Group, 2004.

Standard for Information Technology – Software Life Cycle Processes

Itakura, M. and A. Takaynagi.

. 2008.

A Model for Estimating Program Size and Its Evaluation

Jensen, Randall W.

. Proc. of the International
Conference on Software Engineering. 1982: 104-109.

A Macrolevel Software Development Cost Estimation Methodology

Jensen, Randall W.

. Proc. of the Fourteenth
Asimolar Conference on Circuits, Systems, and Computers. Pacific Grove, CA. Nov. 17-19, 1980.

Projected Productivity Impact of Near-Term Ada Use in Software System Development

Jensen, Randall W.

. Proc.
of the ISPA Annual Conference. 1985: 42-55.

Sage III Software Schedule and Cost Estimating System User Guide

Jensen, Randall W., and Les Dupaix.

. 2002.

Commandments for a Productive Software Development Environment

Jensen, Randall W. “An Economic Analysis of Software Reuse.”

. Proc.
of the Systems and Software Technology Conference. Salt Lake City, UT, Apr. 18-21, 2005.

CrossTalk

Jensen, Randall W. “Extreme Software Cost Estimating.”

. Hill AFB, Ogden STSC, Dec. 2004.

CrossTalk

Jensen, Randall W. “A Pair Programming Experience.”

. Hill AFB, Ogden STSC, Jan. 2004.

CrossTalk

Jensen, Randall W. “Lessons Learned From Another Failed Software Contract.”

. Hill AFB, Ogden STSC, Mar. 2003.

CrossTalk

Jensen, Randall W. “Software Estimating Model Calibration.”

. Hill AFB, Ogden STSC,
Sept. 2003.

CrossTalk

Jensen, Randall W. “Estimating the Cost of Software Reuse.”

. Hill AFB, Ogden STSC, July 2001.

CrossTalk

Jensen, Randall W. “Management Impact on Software Cost and Schedule.”

. Hill AFB, Ogden STSC, May 1997.

CrossTalk

Jensen, Randall W. A

. Hill AFB, Ogden STSC, July
1996.

New Perspective in Software Cost and Schedule Estimation

Jensen, Randall W.

. Proc. of the Software
Technology Conference 1996. Hill AFB, Ogden STSC, 21-26 Apr. 1996.

Projected Productivity Impact of Near-Term Ada Use in Embedded Software Systems

Jensen, Randall W.

. Proc. of
the Seventh Annual International Society of Parametric Analysts Conference. Orlando, FL, May 6-9, 1985.

A Comparison of the Jensen and COCOMO Schedule and Cost Estimation Models

Jensen, Randall W.

. Proc. of the
Sixth Annual International Society of Parametric Analysts Conference. San Francisco, CA, May 17-19, 1984.

Sensitivity Analysis of the Jensen Software Model

Jensen, Randall W.

. Proce. of the Fifth Annual International
Society of Parametric Analysts Conference. St. Louis, MO, Apr. 26-28, 1983.

An Improved Macrolevel Software Development Resource Estimation Model

Jones, Capers.

. Proc. of the Fifth
Annual International Society of Parametric Analysts Conference. St. Louis, MO, Apr. 26-28, 1983.

Programming Languages Table (Release 8.2)

Jones, Capers.

. Burlington, MA: Software Productivity Research, Mar.
1996.

What Are Function Points

Jones, Capers.

. Burlington, MA: Software Productivity Research, Mar. 1995.

Applied Software Measurement

Jones, Capers.

. New York, NY, McGraw-Hill, 1991.

Assessment and Control of Software Risks

Jones, Capers.

. Englewood Cliffs, NJ: Prentice-Hall, 1994.

Programming Productivity

Jones, Capers. “Software Cost Estimation in 2002.”

. New York, NY: McGraw-Hill, 1986.

CrossTalk

Jones, Capers.

. Hill AFB, Ogden STSC, 2002.

Estimating Software Costs

Kankey, R.D. “An Overview of Software Maintenance Costing.”

. Washington, D.C: McGraw-Hill 2007.

Estimator

Kile, R.L.

. Spring 1991: 40-47.

Revic Software Cost Estimating Model User's Manual. Mimeo, Hq AFCMD/EPR, 1994.

133

Kreisel, G.R. A Software Sizing Approach for Conceptual Programs

Lambert, J.M. “A Software Sizing Model.”

. Proc. of the ISPA Annual Conf. 1990: 297-
310.

Journal of Parametrics

Laranjeira, L.A. “Software Size Estimation of Object-Oriented Systems.”

. 6(4) 1986.

IEEE Trans. Software Engineering

Laudon, Kenneth C., and Laudon, Jane P.

. 16(5)
1990: 510-522.

Management Information Systems: Organization and Technology

Lin, H.-H., and W. Kuo.

. 2nd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1997.

Reliability Cost In Software Life Cycle Models

Long, L., K. Bell, J. Gayak, and R. Larson. “Software Cost and Productivity Model.” Aerospace Report No. ATR-
2004(8311)-1. Aerospace Corporation. El Segundo, CA: 20 Feb. 2004.

. Proc. of the Annual Reliability and
Maintainability Symposium. 1987: 364-368.

Low, G.C., and D.R. Jeffery. “Function Points in the Estimation and Evaluation of the Software Process.” IEEE
Trans. Software Engineering

Marciniak, John J., and Donald J. Reifer.

. 16(1) 1990: 64-71.

Software Acquisition Management

McConnell, Steve.

. New York, NY: John Wiley and Sons,
1990.

Code Complete

McCabe, Thomas J., and G. Gordon Schulmeyer.

. 2nd ed. Microsoft Press. Redmond, WA: 2004.

System Testing Aided By Structural Analysis

McGarry, John, et al.

. Proc. of the 1982
IEEE COMPSAC. Chicago, IL: Nov. 1982: 523-528.

Practical Software Measurement

Mills, H.D., M. Dyer, and R. Linger. “Clean Room Software Engineering.”

. Boston, MA: Addison-Wesley, 2001.

IEEE Software

Mosemann, L.K., II. “Ada and C++: A Business Case Analysis.”

 Sept. 1987: 19-25.

CrossTalk

Myers, W. “Allow Plenty of Time for Large-Scale Software.”

. Hill AFB, Ogden STSC. Aug./Sept.
1991.

IEEE Software

NASA.

. July 1989: 92-99.

Goddard Space Flight Center Manager's Handbook for Software Development, Revision 1

NSIA Management Systems Subcommittee. “Industry Standard Guidelines for Earned Value Management
Systems.”

. NASA Software
Engineering Laboratory SEL-84-101, Nov. 1990.

EVMS Work Team

Norden, P. “Curve Fitting for a Model of Applied Research and Development Scheduling.”

. Aug. 8, 1996.

IBM Journal of
Research and Development

Norden, P. “Useful Tools for Project Management.”

. Vol. 2 No. 3. July 1958.

Management of Production

Park, R.E.

. Penguin Books. New Yor, NY:
1970.

A Price S Profile

Park, R.E.

. Prepared In Support Of IITRI Study For USAF & Army Cost Centers, 1989.

The Central Equations of the Price Software Cost Model

Park, Robert E.

. Mimeo, Moorestown, NJ: G.E. Price Systems
1990.

A Manager’s Checklist for Validating Software Cost and Schedule Estimates

Park, Robert E. “Software Size Measurment: A Framework for Counting Source Statements.”
<www.sei.cmu.edu/pub/documents/92.reports/pdf/tr20.92.pdf>.

. Carnegie Mellon
University, CMU/SEI-95-SR-SR-004, Pittsburgh, PA: Software Engineering Institute, Jan. 1995.

Parkinson, C.N. Parkinson’s Law and Other Studies in Administration

Perlis, A., F. Sayward, and M. Shaw (Ed.).

. Boston, MA: Houghton-Mifflin: 1957.

Software Metrics: An Analysis and Evaluation

Pfleeger, Shari Lawrence. “Software Engineering: Theory and Practice,” Upper Saddle River, NJ: Prentice-Hall, Inc.
2001.

. Cambridge, MA: MIT
Press, 1981.

134

Pressman, Roger S. Software Engineering: A Practitioner’s Approach.

PRICE Systems, LLC.

 3rd ed. New York, NY: McGraw-Hill, 1992.

PRICE S® Reference Manual

PRICE Systems.

. Mt. Laurel, NJ: PRICE Systems, 1998.

The Central Equations of the PRICE Software Cost Model

Profeta, C.R.

. Moorestown, NJ: PRICE Systems,
1988.

Life Cycle Cost Analysis of Evolving Software Systems

Putnam, L.H. “A General Empirical Solution to the Macro Software Sizing and Estimating Problem.”

. Proc. of the ISPA Annual Conference. 1990:
391-409.

IEEE
Transactions on Software Engineering

Putnam, L.H.

. New York, NY: 1978.

A Macro-Estimating Methodology for Software Development

Putnam, L.H., and A. Fitzsimmons. "Estimating Software Costs."

. Proc. of the IEEE Compcon 76 Fall.
Sept. 1976: 138-143.

Datamation

Putnam, Lawrence H., and Ware Myers.

. Sept.-Nov. 1979.

Fire Core Metrics

Putnam, Lawrence H., and Ware Myers.

. New York, NY: Dorset House Publishing, 2003.

Measures for Excellence

QSM Corporation.

. Englewood Cliffs, NJ: Yourdon Press, 1992.

SLIM 3.0 for Windows User's Manual. McLean, VA: Quantitative Software Management, 2003.

REVIC Software Cost Estimating Model User’s Manual, Version 9.0

Robertson, L.B., and G.A. Secor. “Effective Management of Software Development.”

. Crystal City, VA: Air Force Cost Analysis
Agency, Feb. 1994.

AT&T Technical Journal

Rubin, H.A. “The Art and Science of Software Estimation: Fifth Generation Estimators.”

Mar./Apr. 1986.

Journal of Parametrics

Schultz, H.P.

.
5(2) 1985: 50-73.

Software Management Metrics

SECNAVINST 5200.2C. “Implementation and Operation of the Defense Acquisition System and the Joint
Capabilities Integration and Development System.” Nov. 19, 2004

. Mitre Corporation (M88-1) for Electronic Systems Division (ESD-Tr-
88-001), 1988.

SEER-SEM
TM

 User's Manual (Release 7.0)

Setzer, R.

. El Segundo, CA: Galorath, Inc., 2003.

Spacecraft Software Cost Estimation: Striving For Excellence through Parametric Models (A Review)

Shalhout, A.

.
Proc. of the Aerospace Technology Conference of the Society of Automotive Engineers. TP-851907, 9 1985
(Reprint in Proc. of the ISPA Annual Conference 8:599-607, 1986).

Estimating the Cost of Software Maintenance

Shyman, S.R., and T.K. Blankenship. “Improving Methods for Estimating Software Costs.”

. Proc. of the ISPA Annual Conference. 1990: 324-333.

Institute for Defense
Analysis (Paper)

Siegel, K.B. “Software Resource Estimating and Program Management.”

. P-2388, 1990.

Journal of Parametrics

Software Productivity Research, Inc.

. 10(2), 1990: 62-
84.

CHECKPOINT for Windows User's Guide (Release 2.2.2)

Software Productivity Research.

. Burlington, MA:
Software Productivity Research, 1993.

KnowledgePLAN Version 2.0 User’s Guide

Stutzke, Dr. Richard D. “Software Estimating: Challenges and Research.”

. Burlington. MA: Software
Productivity Research, 1997.

CrossTalk

Swanson, E.B.

. Hill AFB, Ogden STSC, Apr.
2000: 9-12.

The Dimensions of Maintenance. Proc. of the IEEE/ACM Second International Conf. on Software
Engineering. Oct. 1976.

135

Symons, C.R. “Function Point Analysis: Difficulties and Improvements.” IEEE Trans. Software Engineering

Verner, J., and G. Tate. “Estimating Size and Effort in Fourth-Generation Development.”

. 14(1),
1988: 2-11.

IEEE Software

Wertz, James R., and Wiley J. Larson.

. July 1988:
15-22.

Space Mission Analysis and Design.

Wheaton, M.J. “Functional Software Sizing Methodology.”

 3rd ed. Kluwer Academic Publishers,
1999.

Journal of Parametrics

Whitmire, S.

. 6(1) 1986: 17-23.

3D Function Points: Scientific and Real-Time Extensions to Function Points

Wolverton, R.W.

. Proc. of the Tenth
Annual Pacific Northwest Software Quality Conference. 1992.

Airborne Systems Software Acquisition Engineering Guidebook for Software Cost Analysis and
Estimating

Wolverton, R.W. “The Cost of Developing Large-Scale Software.”

. (ASD-TR-80-5025) Redondo Beach, CA: TRW Corporation, 1980.

IEEE Transactions on Computers. June 1974:
615-636.

136

Appendix D
Software Life Cycle Approaches

There are many representations of a software development life cycle. Each
software industry subculture has its own – or several – representations, and
each representation tends to be modified somewhat for specific projects.
There are many generic approaches that characterize the software
development process. Some of the approaches (process models) that are in
use today are:

• Waterfall (Section D.1)
• Spiral (Section D.2)
• Evolutionary (Section D.3)
• Incremental (Section D.4)
• Agile (Section D.5)
• Rapid Application Development (Section D.6)
• Other Approaches (Section D.7)

There are certainly additional methods, although the above list covers the
mainstream approaches. In the following sections we describe a selected
subset of these approaches representing the major underlying models that are
pertinent to the purposes of this guidebook.

D.1 Waterfall
The waterfall model is the fundamental basis of most software development
approaches and serves well as a basis for describing the typical software
development processes. Note the word “typical” allows us to establish steps
in a process that are not strictly defined
or dictated by Department of Defense
(DoD) standards or specifications. This
section outlines steps that are part of the
normal engineering approach to solving
problems and are followed in the
generalized waterfall development
approach common to system
development as shown in Figure D-1.

The steps in the software waterfall model process are:
• Planning (Software requirements analysis)
• Requirements (CSCI requirements analysis and specification)
• Full-scale development

o Preliminary design (Architecture design to PDR)
o Detail design (PDR to CDR)
o Construction (Code and unit [CSU] development and test)
o Construction (Component [CSC] integration and test)
o Construction (Configuration item [CSCI] integration and test)

• System integration and test
• Maintenance

CSCI
Requirements

analysis

Preliminary
design Detail Design Code and

Unit Test

CSC
integration

and test

CDR SARSRR PDR

CSCI
verification

test

SDR TRR

Figure D-1: Software waterfall process

I’m sorry Dave. I’m afraid I can’t do that.
 HAL 9000

137

D.2 Spiral development
The spiral development approach59

The product of the last iteration of the CSCI requirements development is the
final operational product prototype. Note the final spiral is similar to a
formal traditional engineering waterfall process.

 shown in Figure D-2 was proposed by
B.W. Boehm in 1988. The risk-driven spiral approach includes a series of
evolving prototypes of the software product culminating in an operational
prototype that is the basis for a formal software development; also known as
software development waterfall.

Each iteration of the spiral produces a product. That product can be an
undeliverable prototype used to flesh out the definition (capabilities, user
interface, etc.) of the final product, or the product can be a deliverable that
can be fielded and used as a baseline to be improved in the next spiral of the
development.

D.3 Evolutionary development
Evolutionary software development has much in common with the spiral
development described in the previous section. In evolutionary
development, the software requirements for the first version of the product
are established; the product is developed and delivered to the customer. At
some point during development or after the first product delivery, the
requirements for a second or third etc., product release are defined and
implemented for the next release. These evolutions of the product are
referred to as evolutionary spirals. Microsoft Word is an example of the
development of an evolving product—starting with Word 1, Word 2, and
now Word 2007.

59 Boehm, B.W., “A Spiral Model of Software Development and Enhancement,”
Computer. May, 1988, Pp 61-72

Figure D-2: Spiral development process

For both the evolutionary and
single-step approaches, software
development shall follow an
iterative spiral development
process in which continually
expanding software versions are
based on learning from earlier
development.

 DoD Instruction 5000.24

In a true spiral development,
the cost of developing any
software beyond spiral 1 is
pure speculation.

Randall W. Jensen

138

The evolutionary process shown in
Figure D-3 is logical and problem-
free until the spirals begin to overlap
in time. Ideally, there should be no
overlap between product
developments. When this occurs, the
teams implementing the two products
must interact to resolve requirements
and implementation issues between
product requirements for the two
spirals and implementations of those
spirals. The greater the development
overlap, the more significant the
impact. A secondary development
should not begin until after the preceding development is beyond the detail
design milestone (CDR1) because the first product is not stable enough to
build upon. The defined functionality of each evolution is only available at
its completion.

Each evolution essentially exhibits the characteristics of a waterfall process.

D.4 Incremental development
Incremental developments are
characterized by firm requirements
allocated at Software Requirements
Review (SRR) for each increment
(Figure D-4).

Incremental software development
should not be confused with either
spiral or evolutionary development.
The figure shows multiple secondary
requirements analysis stages leading to
the SRR for each increment. The
important point is that the total CSCI
requirements are developed and
allocated to the individual increments
before full-scale development begins.

Full functionality is not available until completion of the final increment as
opposed to the evolutionary approach. Requirements allocation can be
planned to provide partial functionality at the completion of each increment.
However, full CSCI functionality and the ability to test all CSCI
requirements cannot be completed until all incremental developments are
complete. Partial testing is possible at the completion of each increment.

D.5 Agile development (Extreme
programming)
The Agile strategy is to develop the product as a continual refinement of
requirements, starting from a simple capability to a complete product. Agile
development represents a radical departure from the classic waterfall
variation. There are many development approaches that fall under the Agile
umbrella. We are going to capture the essence of the concept in this section.
This essence is not easy to document, but is extremely easy in concept. The
approach starts, as do most of the others, with a set of requirements that have

CSCI
Requirements

analysis

Preliminary
design Detail Design Code and

Unit Test

CSC
integration

and test

CDR1 SAR1SRR1 PDR1

CSCI
verification

test

SDR

TRR1

CSCI
Requirements

analysis

Preliminary
design

Detail
Design

Code and
Unit Test

CSC
integration

and test

CDR2 SAR2SRR2 PDR2

CSCI
verification

test

SDR2 TRR2

Figure D-3: Evolutionary development process

CSCI
Requirements

analysis Preliminary
design Detail Design Code and

Unit Test

Increment 1
integration

and test

SAR

SRR

CSCI
verification

test

TRR

Preliminary
design Detail Design Code and

Unit Test

Increment 2
integration

and test

CDR1

PDR2

PDR1

CDR2

Increment 1
requirements

analysis

Increment 2
requirements

analysis

SDR

SRR2

SRR1

 Figure D-4: Incremental software development

139

been approved (at least to a high level). Rather than
attempt to develop the full set of requirements in a single
large project, the requirements are listed in order of
importance and implemented, one at a time, in that order.

The first step in development is to design a test to verify
correct implementation of the requirement. The
implementation is designed, coded, tested, and reviewed
by a small, efficient team. The product builds in size and
capability with each iteration. At several points in this
repeated process, the product architecture is evaluated and
adjusted (re-factored) as necessary to provide an optimum
platform for the next iteration. Each iteration adds
capability to the product until the product is complete and
all requirements are satisfied, as shown in Figure D-5.

The tests are written from the user’s perspective before the code is
implemented. They are then collected during the development and run in
total at the completion of each iteration. Each refinement is accomplished in
days or weeks instead of months and years. At each refinement, the
customer can review the progress to ascertain whether the written
requirements are consistent with the user’s needs and the available
technology.

D.6 Rapid application development
Rapid Application Development (RAD) is another approach to the
incremental software development process model that emphasizes an
extremely short development cycle. The RAD model is an adaptation of the
waterfall model in which the rapid, or “high speed,” development is
achieved through the use of reusable components. The RAD process is
primarily used in information system application development. The
following process steps are conceptually similar to the traditional waterfall
model as follows:

1. Build a business function model.

2. Define the data objects that are needed to support the business model.

3. Define the processing necessary achieve the necessary functions using
both reusable and new components.

4. Create the software to support the business functions, and integrate it
with the reusable components.

5. Test the developed software and system.

D.7 Other approaches
Component-based development incorporates many characteristics of the
spiral model. It is evolutionary in nature around the basic spiral. The
significant difference between the component and spiral approaches is the
use of pre-packaged components, or classes.

CSCI
Requirements

analysis

Use Case
Design

Detail
Design Code and Unit

Test

SARSRR

CSCI
verification

test

SDR

TRR

Figure D-5: Agile development

Our productivity is great, we
just aren’t delivering anything.

 Senior Development Manager

140

The formal methods approach is based on the formal mathematical
specification of the computer software. One version of this approach is
the cleanroom software engineering method described by Harlan Mills60

Fourth-generation techniques encompass a broad spectrum of software
tools that allow the developer to specify some characteristics of the
software at a higher level. The tools then automatically generate source
code to match the user’s definition. The form of the process can take on
characteristics of the waterfall, the spiral, or the evolutionary models.
Care must be taken when using new methods that proper time is spent in
verification and validation. The purpose of new methods is not simply to
eliminate paperwork or reduce process time – the new method must
ensure that the final product meets user needs and maintains high quality.

.

60 Mills, H.D., M. Dyer, and R. Linger. “Clean Room Software
Engineering.” IEEE Software Sept. 1987: 19-25.

Harlan D. Mills (1919-1996):
Mills’ contributions to software
engineering have had a profound
and enduring effect on education
and industrial practices. His
cleanroom software development
process emphasized top-down
design and formal specification.
Mills was termed a “super-
programmer,” a term that would
evolve to the concept in IBM of a
“chief programmer.” In a later era,
he might have been called a
“hacker.”

http://en.wikipedia.org/wiki/1919�
http://en.wikipedia.org/wiki/1996�
http://en.wikipedia.org/wiki/Software_engineering�
http://en.wikipedia.org/wiki/Software_engineering�
http://en.wikipedia.org/wiki/Cleanroom_Software_Engineering�
http://en.wikipedia.org/wiki/Top-down_design�
http://en.wikipedia.org/wiki/Top-down_design�
http://en.wikipedia.org/wiki/Formal_specification�

141

Appendix E

 Software Estimating Models
There are a large number of ways software development estimating models
can be categorized. Some estimating models fit into multiple categories,
which often lead to difficulties in trying to assign them to a specific
taxonomy. Boehm61

1. Analogy

 identified seven model categories of which four are
useful for comparison. These types are:

2. Expert judgment
3. Parkinson62

4. Price-to-win

5. Top-down
6. Bottom-up
7. Algorithmic (Parametric)

The Parkinson, price-to-win, and top-down types can be eliminated from the
list of important methods, not because they don’t exist, but because they are
undesirable methods. Parkinson’s Law states, “Work expands to fill the
available volume.” Estimates derived from Parkinson’s Law tend to be
generally accurate because if the estimate leaves a cushion of time and/or
money, the product will invariably find “extra” features and testing until the
budgeted time and money are consumed. The cushion can also reduce
efficiency to consume the budget. The weakness in the Parkinson approach
appears when the original budget does not have adequate schedule or money.

The price-to-win (low-bid) method has won many contracts for various
contractors. The estimation is based on the customer’s budget instead of the
software functionality. The method is most often applied for cost plus
software and/or system development contracts. The method, applied to a
fixed price contract, has driven developers out of business unless the
contractor can adjust the fixed price during the contract lifetime. The main
reason the price-to-win method is still a common estimating approach is
software development estimating technology is immature and software
developers are able to convince customers that poor (illegitimate) estimates
are valid and achievable.

Top-down software development estimates are derived by allocating
software costs from a higher-level product or system budget. The total cost
is partitioned from the higher-level budget. Top-down estimates can be
derived from any of the seven estimating types listed. In fact, the Parkinson
and price-to-win estimates are generally top-down approaches. The major

61 Boehm, B.W. Software Engineering Economics. Prentice-Hall, Inc., Englewood
Cliffs, NJ: 1981, pp. 329-42.
62 Parkinson, C.N. Parkinson’s Law and Other Studies in Administration. Houghton-
Mifflin, Boston, MA: 1957.

Law of Definitive Precision
The weaker the data available
upon which to base one’s
conclusion, the greater the
precision which should be quoted
in order to give that data
authenticity.

Norman Augustine, 1983

Any sufficiently advanced technology
is indistinguishable from magic.

 Arthur C. Clarke

142

problem with the top-down estimate is it does not allow the estimator to see
the software development requirements in sufficient detail to be effective.

Algorithmic estimating models are based on one or more mathematical
algorithms that produce an estimate as a function of a set of variables
defined as cost drivers. Parametric models including most of the
commercially available estimating tools fall into this category.

The remaining methods are summarized in Table E-1.

E.1 Analogy models
Analogy models are the simplest type of estimating models. They are used
to estimate cost by comparing one program with a similar past program or
programs, thereby avoiding issues with expert judgment bias. For example,
in developing a flight program for a new aircraft, the first estimate step
would be to locate an existing flight program from a pre-existing, but
similar, aircraft. The pre-existing program has a known size, development
cost and schedule, and productivity rate. If the new program has 20 percent
more functionality (subjective measure) than the pre-existing program, the
cost and schedule for the new program can be projected by scaling the
existing cost, ignoring inflation, and scheduling to the new application. The
productivity should be approximately constant. The advantage of the
analogy method is that it is based on experience. However, the method is
limited because, in most instances, similar programs do not exist. For
example, you cannot equate the cost of 100,000 lines of Ada code for a
bomber’s terrain-following program to 100,000 lines of COBOL code for
payroll software. Furthermore, for most modern systems, the new programs
have no historical precedents.

E.2 Expert judgment models
Expert judgment models or techniques involve consulting with one or more
experts to use their knowledge, experience, and understanding of the new
project to arrive at a cost and schedule estimate. Experts can factor in
differences between historic project data and the requirements of the new
software project. The differences often include technology and architecture

Table E-1 Comparison of major software estimating methods

Method Description Advantages Disadvantages

Analogy Compare project with past
projects; scale effort and
schedule by historic project data.

Estimate based on actual data and
experience.

Few projects are similar enough to use
without adjustments.

Expert judgment Consult or collaborate with one
or more “experts.”

Little or no historical data is
required – useful for new or unique
projects.

Experts present their own biases in
estimates. Knowledge is often
questionable and unsupportable.

Bottom-up Sum component estimates to
product level.

Detailed basis for estimates tend to
reduce holes and improve cost
projections.

Detailed data is often missing in early
development stages. Fails to provide
basis for schedule projections.

Parametric Produce overall project estimate
using mathematic algorithms
and project characteristics.

CERs based on historical data –
allows the estimating model to be
adjusted to the proposed
development environment and
product characteristics. Easy to
perform trade-off studies.

The bias from a large number of
parameters can lead to inaccurate
results without training and
experience. Moderately subjective.

143

changes as well as personnel characteristics, development environment
changes, and other project considerations. This method is valuable when no
historic precedent exists.

On the other hand, expert judgment is often no better than the expertise and
objectivity of the estimator, who may be biased (usually optimistic) or
unfamiliar with the primary aspects of the development task. It is difficult to
find a balance between the quick-response expert estimate (which is often
hard to rationalize) and the slower, more thorough estimate provided by an
estimating team (group consensus).

Popular expert judgment techniques such as the Delphi and Wideband
Delphi methods are often used to support the expert’s estimate. Delphi
techniques can alleviate bias and experts are usually hard-pressed to
accurately estimate the cost of a new software program. Therefore, while
expert judgment models are useful in determining inputs to other types of
models, they are not frequently used alone in software cost estimation.

E.2.1 Delphi method
Everyone has a bias, including experts. Therefore, it is a good idea to obtain
estimates from more than one expert, and there are several ways to combine
the estimates into one. The simplest method is to compute the mean of the
individual estimates. However, one or two extreme estimates can introduce
a bias of their own.

A second method is to lock the experts in a room until they can agree on a
single estimate. This method can filter out uninformed estimates but
introduces biases of its own. The estimate can be distorted by influential or
assertive group members or distorted by authority figures and political
issues.

The Delphi Method63

1. Each expert receives a specification (problem statement) and a form
to record estimates.

 (or technique, since it is known by both labels) was
originated at the RAND Corporation in 1948 as a means of predicting future
occurrences, and has become a standard method of forming expert consensus
and cost estimation. The Delphi Method can be briefly summarized by the
following procedure:

2. Experts fill out forms anonymously. Experts may ask questions of
the coordinator, but cannot discuss estimates with each other.

3. The coordinator summarizes the expert’s estimates on a form and
requests another iteration of the expert’s estimate with the rationale
behind the new iteration estimate.

4. Experts fill out forms anonymously with the rationale for the
estimate.

5. The experts iterate steps 3 and 4 until adequate estimate
convergence is achieved. No discussion among experts is allowed
until convergence.

63 Helmer, O. Social Technology. Basic Books, New York, NY: 1966.

Great spirits have always
encountered violent opposition
from mediocre minds.

 Albert Einstein

144

E.2.2 Wideband delphi method
Boehm64

1. Each expert receives a specification (problem statement) and a form
to record estimates.

 and others concluded the Delphi Method did not provide a wide
enough communication bandwidth for the experts to exchange the volume of
information necessary to calibrate their estimates with those of the other
participants. The Delphi technique was modified to allow this information
exchange (Wideband Delphi Method) that is summarized in the following
steps:

2. The coordinator chairs a group meeting in which the experts discuss
the problem issues with the coordinator and with each other.

3. Experts fill out forms anonymously.

4. The coordinator summarizes the expert’s estimates on a form
requesting another iteration of the expert’s estimate not including
the rationale behind estimate.

5. The coordinator calls a group meeting that focuses on the points
where the estimates varied.

6. Experts fill out forms anonymously.

7. The coordinator and experts iterate steps 5 and 6 until adequate
estimate convergence is achieved. No discussion among experts is
allowed until convergence.

E.3 Bottom-up estimating
Bottom-up estimating, also called "grass-roots estimating" or decomposition
provides an alternate means of projecting software costs. It involves
estimating costs by a detailed analysis of the cost of each unit (or computer
software unit [CSU]), then summing unit costs to determine the cost (or
effort) for each Computer Software Configuration Item (CSCI), and,
possibly, the software cost for the overall system. Bottom-up estimates tend
to cover only the costs of developing the individual units; thus, the estimates
are often understated. This type of estimate is also more effort intensive than
a top-down estimate and is usually more expensive and time consuming.

The most effective way to implement a bottom-up estimate is to establish
(organize) a work breakdown structure (WBS) that includes not only the
hierarchy of the software product components, but also includes the activity
hierarchy of the project elements such as integration, configuration
management, and project management. The use of the WBS to collect cost
items ensures that all of the cost elements are accounted for.

Bottom-up estimates are often used during proposal preparation and for
software project cost-tracking during the development process. This method
has the advantage of providing a detailed cost estimate and, consequently,
tends to be more accurate and stable than other methods. The method also
provides cost tracking, since separate estimates are usually conducted during
each software development phase.

Bottom-up estimating has several disadvantages. Since detailed information
about each CSU is required, it can be difficult to use during early life cycle

64 Boehm, B.W. Software Engineering Economics. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1981: 335.

145

phases where detailed information is unavailable. The method is less useful
until the detailed product architecture is complete. A second major
disadvantage is that the bottom-up method is not intended to produce a
schedule estimate—a critical factor in the preparation of a development plan.

E.4 Parametric models
Parametric models, as described here, use one or more mathematical
algorithms to produce a software cost and schedule estimate as a function of
a number of variables including size, product characteristics, and
development environment cost drivers. Parametric models and techniques
for software projects generally estimate costs at the system or CSCI levels.
The CSCI costs can later be partitioned among lower-level CSUs and/or
among life-cycle phases. The advantages of parametric models are that they
develop estimates quickly (efficiently), the estimates are repeatable, the
estimates encapsulate the estimate basis, and the methods require little
detailed information.

Parametric models have weaknesses. The major weaknesses are related to
the historic basis of their formulation. A collection of historic data is used to
derive the cost estimating relationships (CERs) that are the basis of the
model. The models are representations of the data from which they are
derived. For example, a model derived from data obtained from schedule-
constrained projects is more likely to produce a meaningful estimate for
another schedule-constrained project than a model derived from a broad
range of projects, including both unconstrained and constrained projects.
Parametric models do not generally deal with exceptional condition—such
as Agile organizations, exceptional personnel, and management style—
unless those conditions have been specifically included in the model’s
parameters and those parameters have been calibrated to related historic data.
Parametric models tend to be less stable than bottom-up methods because
they do not inherently foster individual responsibility.

Since most software estimating today is performed using parametric models,
it is important to emphasize that no model can compensate for poor size
information, poor settings of the model’s parameters, lack of estimator
experience, or willful misuse.

E.5 Origins and evolution of parametric
software models
This section begins with an enlightening trip back into the fuzzy history of
computer-based software cost and schedule estimating methods and tools.
The first real contribution to the estimating technology occurred in 1958
with the introduction of the Norden staffing profile65

The period from 1974 to 1981 brought most of the software estimating
models (tools) we use today in the marketplace. The first significant model
publication was presented by Ray Wolverton

. This profile, which
defines the way staff is assigned to an engineering development, has been
directly or indirectly incorporated into most of the estimating methodologies
introduced since that time.

66

65 Norden, P.V. “Curve Fitting for a Model of Applied Research and Development
Scheduling.” IBM Journal of Research and Development Vol. 2, No. 3, July, 1958.

 of TRW in 1974. Wolverton

66 Wolverton, R.W. “The Cost of Developing Large-Scale Software.” IEEE
Transactions on Computers June 1974: 615-636.

146

was also a major contributor to the development of the COnstructive COst
MOdel (COCOMO)67. Larry Putnam introduced the Software Lifecycle
Model® (SLIM)68 in 1976, based on his work in the U.S. Army. The third
major contribution to the evolution of software estimating tools was the Doty
Associates Model69 developed for the U.S. Air Force in 1977. The Doty
Model introduced the concept of cost drivers which was adopted by both
Seer and COCOMO. Seer70 was developed by Dr. Randall W. Jensen at
Hughes Aircraft Company in 1979, followed by the publication of
COCOMO, a model developed by Barry Boehm and Ray Wolverton at
TRW, in 1981. REVIC71

Each of these tools evolved slowly (refined algorithms and drivers) until
about 1995, when significant changes were made to several models.
COCOMO II

, a recalibration of COCOMO, was introduced in
1988. Seer was commercially implemented as SEER-SEMTM by Galorath
Associates in 1990.

72, for example, had several releases between 1995 and 1999.
Sage73

When we look at software estimating models from a distance (like 10,000
feet), they generally fall into one of three classes: first-, second- or third-
order. The following sections (Sec. E.6 through E.8) describe three common
mathematical model classes as a fundamental framework for discussion and
comparison.

, released in 1995, is a major redefinition of the 1979 Seer model that
uniquely focuses on management characteristics of the developer as well as
the development technology.

E.6 First-order models
The first-order model is the most rudimentary parametric estimating model
class. This model is, simply, a productivity factor (defining the development
organization production capability in terms of arbitrary production units)
multiplied by the software product effective size to obtain the development
effort or cost. The production units (size) can be source lines of code
(SLOC), function points, object points, use cases, and a host of other units
depending on one’s estimating approach. The first-order model is the
basis for the system-level estimating approach used in this guidebook.

For the purpose of this discussion, we will use effective source lines of code
(ESLOC) as the production unit measure and person hours per effective
source line of code as the productivity measure. The first-order estimating
model can be summarized as:

67 Boehm, B.W. Software Engineering Economic. Prentice-Hall, Inc., Englewood
Cliffs, NJ: 1981.
68 Putnam, L H. A Macro-Estimating Methodology for Software Development. Proc.
IEEE COMPCON 76 Fall. Sept., 1976: 138-143.
69 Herd, J.R., J.N. Postak, We. E. Russell, and K.R. Stewart. “Software Cost
Estimation Study – Final Technical Report.” RADC-TR-77-220, Vol. I. Doty
Associates, Inc., Rockville, MD: June 1977.
70 Jensen, R.W. A Macrolevel Software Development Cost Estimation Methodology.
Proc. of the Fourteenth Asilomar Conf.on Circuits, Systems, and Computers. Pacific
Grove, CA: 17-19 Nov. 1980.
71 Kile, R.L. REVIC Software Cost Estimating Model User’s Manual. HQ
AFCMD/EPR, 1988.
72 B. Boehm, A. Egyed, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R.
Selby. “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0.”
Annals of Software Engineering 1995: 295-321.
73 Jensen, R.W. A New Perspective in Software Cost and Schedule Estimation. Proc.
of 1996 Software Technology Conference. Hill AFB, Ogden, UT: 21-26 Apr. 1996.

147

ekd SCE = (E-1)

where dE = the development effort in person months (PM),

 kC = a productivity factor (PM/ESLOC), and

 eS = the number of effective source lines of code (ESLOC), or

 reusednewe SSSS 2.075.0 mod ++= (E-2)

where Snew = the number of new SLOC being created for the
product,
Smod = the number of pre-existing SLOC being modified
for the product development, and
Sreused = the number of pre-existing, unmodified sloc used
in the product.

The productivity factor is commonly determined by the product type,
historic developer capability, or both, derived from past development
projects. As simple as this equation is, it is widely used to produce high
level, rough estimates. This model is essentially the only parametric model
that can be effectively used prior to Milestone A because of a lack of
available information about the development environment.

By collecting several data points from a specific organization that is
developing a specific product type, an average productivity factor can be
computed that will be superior to the factors tabulated in this section for
specific projects by a contractor. Collecting several data points of different
sizes will produce a size-sensitive productivity relationship. Table E-214
shows some typical productivity values for various types of software
application types.

A system complexity (column D) shows the relationship between the
software type and complexity. Complexity is defined and discussed in
Section 10.1. It is interesting to note that the productivity rate achieved for
each of the software types tends to group around the associated complexity
value. Less complex types (higher D values) have higher productivity for
each project size group.

Software Type D 10
KESLOC

20
KESLOC

50
KESLOC

100
KESLOC

250
KESLOC

Avionics 8 12.6 14.5 17.4 20.0 24.0

Business 15 2.1 2.4 2.9 3.3 4.0

Command and control 10 6.3 7.2 8.7 10.0 12.0

Embedded 8 9.0 10.4 12.4 14.3 17.2

Internet (public) 12 2.1 2.4 2.9 3.3 4.0

Internet (internal) 15 1.1 1.2 1.5 1.7 2.0

Microcode 4-8 12.6 14.5 17.4 20.0 24.0

Process control 12 4.2 4.8 5.8 6.7 8.0

Real-time 8 12.6 14.5 17.4 20.0 24.0

Table E-2: Typical productivity factors (person-months per KESLOC) by size and software type

148

Software Type D 10
KESLOC

20
KESLOC

50
KESLOC

100
KESLOC

250
KESLOC

Scientific systems/
Engineering research 12 2.5 2.9 3.5 4.0 4.8

Shrink-wrapped/ Packaged 12-15 2.1 2.4 2.9 3.3 4.0

Systems/ Drivers 10 6.3 7.2 8.7 10.0 12.0

Telecommunication 10 6.3 7.2 8.7 10.0 12.0

A simple application of Table E-2 for an effort estimate can be shown as
follows:

The effort required for a software development is required for a
50,000 ESLOC avionics system. The effort is given by

 ekd SCE =

 = 11.76 * 50 = 588 PM

The corresponding productivity is 50,000/588 = 85 source lines per
PM.

E.7 Second-order models
The second-order model compensates for the productivity decrease in larger
projects by incorporating an “entropy74

() 2/1−nn

” factor to account for the
productivity change. The entropy effect demonstrates the impact of the large
number of communication paths present in large development teams. The
development team theoretically has communication paths, where
n is the number of development personnel. The second-order model
becomes

 β
ekd SCE 2= (E-3)

where β is an entropy factor that measures the communication efficiency
in the development team, and

 eS is the number of ESLOC, or

 reusednewe SSSS 2.075.0 mod ++= (E-4)

where Snew is the number of new SLOC being created for the
product,
Smod is the number of pre-existing SLOC being modified
for the product development, and
Sreused is the number of pre-existing, unmodified sloc used
in the product.

An entropy factor value of 1.0 represents no productivity change with size.
An entropy value of less than 1.0 shows a productivity increase with size,

74 Entropy. An index of the degree in which the total energy of a thermodynamic
system is uniformly distributed and is thus unavailable for conversion into work.
Entropy in software development amounts to the energy expended in the process
without contributing to the software product. For example, reverse engineering of the
existing software product is necessary, but produces no product. Communication
faults create errors, rework, and consumes resources, but do not contribute to the
product.

149

and a value greater than 1.0 represents a productivity decrease with size.
Entropy values of less than 1.0 are inconsistent with historical software
data75

Productivity rates are obviously affected by system and CSCI component
size as seen in the second- and third-order cost estimating models. The size
exponent of approximately 1.2 has a major impact on development effort.
The second-order model is included in this appendix for completeness, but is
not used in the system- or component-level estimating approaches described
in this guidebook.

. Most of the widely used models from the 1980s (COCOMO
embedded mode, PRICE-S, REVIC, Seer and SLIM) use entropy values of
approximately 1.2 for Department of Defense projects. The 1.2 value
applies to development tasks using more than 5 development personnel. A
lone programmer task has a corresponding entropy factor of 1.0 since there
is no communication issue.

E.8 Third-order models
The major weakness of the second-order model is its inabilityto adjust the
productivity factor to account for variations between projects and differences
in development environments. For example, contractor A may have a more
efficient process than contractor B; however, contractor A may be using a
development team with less experience than assumed in the historic
productivity factor. Different constraints may be present in the current
development than were present in previous projects. In addition, using a
fixed, or calibrated, productivity factor limits the model’s application across
a wide variety of environments.

The third-order model compensates for the second-order model’s narrow
applicability by incorporating a set of environment factors to adjust the
productivity factor to fit a larger range of problems. The COCOMO form of
this model is

 β
e

n

i
ikd SfCE

= ∏

=1
3 (E-5)

where if = ith environment factor, and
n = number of environment factors.

The number of environment factors varies across estimating models, and is
typically between 15 and 32. The factors can be grouped into four distinct
types: personnel, management, environment, and product.

A list of the common environment factors used by third-order cost and
schedule estimating models is contained in Table E-3. Some of the factors
are used by all models with some differences in names and definitions.
Analyst capability (ACAP) is an example of factors common to essentially
all models. The definition of this parameter varies significantly across these
models. COCOMO and Seer (Jensen I) models use a definition based
largely on technology. Jensen II models use a definition that emphasizes the
impact of management quality as well as technology.

75 This is a good place to point out a major difference between software and almost
any other manufactured product. In other estimating disciplines, a large number of
product replications improve productivity through the ability to spread costs over a
large sample and reduce learning curve effects. The software product is but a single
production item that becomes more complex to manage and develop as the effective
size increases.

150

Schedule constraint (SCED) is a factor used only on COCOMO-based
models. This factor is implicit in other models. The Multiple Organizations
(MORG) factor is used only in Jensen II-based models.

The third-order model is the basis for the component-level estimating
approach used in this guidebook.

Characteristic Acronym Group Definition

Analyst Capability ACAP Personnel Measures the impact of front-end development personnel on
productivity.

Application Experience AEXP Personnel Measures application experience impact on productivity.

Develop System Experience DEXP Personnel Measures development system experience impact on productivity.

Develop System Volatility DVOL Support Measures development system experience impact on productivity.

Language Experience LEXP Personnel Measures programming language experience impact on productivity.

Memory Constraints MEMC Product Measures the impact of product operating memory requirements on
software development cost and schedule.

Modern Practices MODP Support Measures development practices impact on productivity.

Modern Tools TOOL Support Measures impact of software development tools on productivity.

Multiple Classifications MCLS Management Measures impact of security classification separation of development
personnel of development productivity.

Multiple Organizations MORG Management Measures the impact of using development personnel, groups, or
contactors on development productivity.

Multiple Sites MULT Management Measures the impact of spreading the software CSCI development
across multiple locations on productivity.

Practices Experience PEXP Personnel Measures practices and procedures experience impact on
productivity.

Process Improvement PIMP Support Measures impact of process improvement change on productivity.

Process Volatility PVOL Support Measures impact of development process and practice volatility on
productivity.

Product Complexity CPLX Product Measures the impact of inherent software product complexity on
software development cost and schedule.

Product Re-hosting
Requirements

HOST Product Measures re-hosting impact as part of the development requirements
on software development cost and schedule.

Product Reliability
Requirements

RELY Product Measures the impact of product reliability requirements on software
development cost and schedule. This is often divided into quality,
documentation and test categories.

Programmer Capability PCAP Personnel Measures the impact of programming and test personnel on
productivity.

Real-Time Requirements RTIM Product Measures the impact of the real-time interface requirements with the
operational environment on software development cost and schedule.

Required Reuse RUSE Support Measures impact of reuse requirements on development cost and
schedule.

Resource Support Location RLOC Management Measures the impact of hardware, system and development tool
support personnel isolation on development productivity.

Schedule Constraint SCED Support Measures impact of schedule compression and expansion on
development productivity.

Software Security
Requirements

SECR Product Measures the impact of product security requirements on effort and
schedule.

Table E-3: Environment factors used by common third-order software cost and schedule estimation models

151

Characteristic Acronym Group Definition

Special Display Requirements DISP Product Measures the impact of user interface requirements on software
development and schedule.

Target System Experience TEXP Personnel Measures target system experience impact on productivity.

Target System Volatility TVOL Product Measures the impact of target computer volatility on software
development cost and schedule.

Timing Constraints TIMC Product Measures the impact of Central Processing Unit timing constraints on
software development cost and schedule.

152

Appendix F
System-Level Estimate Case Study

There are two fundamental estimating processes for software development:
system and component. The system estimating process is useful early in
software acquisition where the software is known at only a high level. At
this point in time, the software is defined conceptually and software
requirements documents have not been produced. The component-level
estimate will be used to perform detailed estimates of software components
at the Computer Software Configuration Item (CSCI) level.

The system, being just a concept or only being defined by functional
requirements, does not yet have the system components defined. The
information available probably includes a very rough size estimate and
functional areas (as shown) in Table F-1. From the functional areas, we can
derive an approximate productivity value from the software types and the
associated system complexity (Cplx) in Tables F-5 and F-6. The estimate
developed under these conditions is still only a coarse approximation.

F.1 HACS baseline size estimate
The Hierarchical Autonomous Communication
System (HACS) has been created or, rather,
translated, as a demonstration vehicle for the cost
estimation process. The system contains several
functional areas or elements. The baseline size
information provided in the Cost Analysis
Requirements Document (CARD) specifies that the
Control Data Links task has a baseline effective
size of 320,000 source lines of code (ESLOC).
The CARD also contains enough information to
define the User Information Database size in
function points. The information at the Software
Requirements Review (SRR) is shown in Table
F-1.

The CARD places each of the HACS functional
areas into the high reliability category with the
exception of the Brain (system/driver or process
control functions), which falls into the very high category, and Solitaire (no
real-time processing), which is at or below low reliability (according to
Tables F-5, 6, and 7).

The unadjusted function point (UFP) count for the HACS User Info
Database software is calculated in Table F-2. The function point values in
the table have been derived from elements in the CARD and the HACS
specification. The UFP count for the Info Database task is 84. The process
for determining the function point count is explained in Table F-7.

Tornadoes are caused by trailer parks.
Norm Augustine

Table F-1: Baseline description of the HACS Communication
System at the software requirements review (concept stage)

Task Name Size, Eff
Baseline

Cplx
(D) Units

User Info Database n/a 13 Function Points

System Manager 219,000 11 ESLOC

Control Data Links 320,000 12 ESLOC

Brain 184,000 10 ESLOC

Sensors 157,000 12 ESLOC

Solitaire 74,000 12 ESLOC

OS (APIs) 53,000 10 ESLOC

System Total 1,012,000 n/a 1,165,149

153

The next step in the equivalent baseline software size calculation for the
HACS User Info Database is to adjust the function point size to account for
differences between the database characteristics and the normal
characteristics assumed by the UFP count. This involves adjusting the UFP
count by the General System Characteristic (GSC) value adjustment factor
(VAF) rating. Once the 14 GSCs for the database have been evaluated, as
demonstrated for HACS in Table F-3, the VAF can be computed using the
IFPUG VAF equation. The equation is

+= ∑

=
100/65.0

14

1i
iGSCVAF (F-1)

where GSCi = degree of influence for each GSC, and
 i = 1 to 14 representing each GSC.

The resulting VAF score will be between 0.65 and 1.35 depending on the
sum of the individual ratings. The sum of the database GSCs is

43
14

1
=∑

=i
iGSC

The VAF result for the HACS Info Database is then

VAF = 1.08.

Table F-3: HACS GSC ratings

No. General Characteristic Value No. General Characteristic Value

1 Data communications 0 8 Online update 5

2 Distributed data processing 4 9 Complex processing 0

3 Performance 3 10 Reusability 0

4 Heavily used configuration 4 11 Installation ease 4

5 Transaction rate 5 12 Operational ease 5

6 Online data entry 5 13 Multiple sites 4

7 End-user efficiency 0 14 Facilitate change 4

Table F-2: HACS User Info Database unadjusted function point calculation

Component Types
 Ranking

Total
Low Average High

Internal Logical File 1 1 0 17

External Interface File 1 3 0 26

External Input 2 3 0 18

External Output 0 3 0 15

External Inquiry 0 2 0 8

Transform 0 0 0 0

Transition 0 0

Unadjusted Function Points 84

154

The adjusted function point (AFP) count is obtained by multiplying the VAF
times the UFP count. The standard AFP count is given by:

UFPVAFAFP ×= (F-2)

The AFP count for the HACS Info Database is:

 AFP = 1.08 x 84 = 91 function points.

The conversion of function points (UFP or AFP) to equivalent source lines
of code is accomplished by multiplying AFP by a scaling factor (backfire
factor [BF]) to produce the total software size as

BFAFPSt ×= (F-3)

where St = total software source lines of code count,
AFP = adjusted function point count, and

 BF = SLOC/FP backfire factor from Table F-4.

or,

1.08 x 84 x 55 = 5,000 (approximately) total SLOC

The resulting User Info Database effective size for the HACS
software is presented in Table F-5 assuming the implementation
language for the User Info Database is C++ and BF = 55. The
effective size is equal to the total size since there is no pre-existing
code assumed in this value.

The baseline effective size is the starting size for the effort analysis.
The baseline values from the CARD are summarized in Table F-7
Column 2. This value assumes no software growth during
development. At the concept stage, the size is only a very rough
estimate unless there is considerable historical data to support the
estimated value.

Table F-4: FP to SLOC conversion

Language SLOC/FP Range Language SLOC/FP Range

Ada 95 49 40-71 JOVIAL 107 70-165

Assembler, Basic 320 237-575 Object-oriented 29 13-40

Assembler, Macro 213 170-295 Pascal 91 91-160

BASIC, ANSI 32 24-32 PL/I 80 65-95

C 128 60-225 PROLOG 64 35-90

C++ 55 29-140 CMS-2 107 70-135

COBOL (ANSI 95) 91 91-175 3rd generation 80 45-125

FORTRAN 95 71 65-150 4th generation 20 10-30

HTML 3.0 15 10-35 Visual Basic 6 32 20-37

JAVA 53 46-80 Visual C++ 34 24-40

Table F-5: Baseline description of the HACS
Communication System at the start of requirements

development (concept stage)

Task Name Size, Eff
Baseline

Cplx
(D)

User Info Database 5,000 13

System Manager 219,000 11

Control Data Links 320,000 12

Brain 184,000 10

Sensors 157,000 12

Solitaire 74,000 12
Operating System (OS)
Application Program
Interface (APIs)

53,000 10

System Total 1,012,000 n/a

155

F.2 HACS size growth calculation
The size growth factors can be obtained from Table F-6 which has been
extracted from Tables 6-3 and 6-4. The growth factors are determined by the
complexity of the software functional areas (Table F-5, column 3) and from
the maturity of the system being developed. The factors shown for SRR
(Table F-6 forecast the mean and maximum functional area software sizes at
the end of full scale development.

The mean growth factor for the HACS User Info Database software with a
complexity value of 13 and SRR maturity is 1.13, or 13 percent. The mean
size growth76

650,5000,513.1 =×=meanS

 for the User Info Database is

ESLOC

The maximum growth factor for the HACS User Info Database software
with a complexity value of 13 and SRR maturity is 1.46 or 46 percent. The
maximum growth size is

300,7000,546.1max =×=imumS ESLOC

Corresponding results for the remaining HACS components are also shown
in Table F-7.

Table F-7 assumes the same production phase for each task at the time of the
estimate and reflects both mean and maximum effective size growth from
the baseline effective size.

76 The mean size growth factor is an example of an “exact approximation” that crops
up frequently in estimating. The information in Table F-5 is truncated to 2 decimal
places and produces a size estimate that is slightly different from the result obtained
from Equation F-14. Remember that both numbers are approximations. For
simplicity, we will use the tabular information for the size estimates in the examples.

Table F-7: Baseline description of the HACS at the start of requirements development (concept stage)

Task Name Size, Eff
Baseline

Cplx
(D)

Size, Eff
Mean

Growth Factor Size, Eff
Maximum Mean Max

User Info Database 5,000 13 5,650 1.13 1.46 7,300

System Manager 219,000 11 260,610 1.19 1.64 359,160

Control Data Links 320,000 12 371,200 1.16 1.55 496,000

Brain 184,000 10 222,640 1.21 1.72 316,480

Sensors 157,000 12 182,120 1.16 1.55 243,350

Solitaire 74,000 12 85,840 1.16 1.55 114,700

OS (APIs) 53,000 10 64,130 1.21 1.72 91,160

System Total 1,012,000 n/a 1,192,190 n/a n/a 1,628,150

Table F-6: Software growth projections as a function of maturity (M) and complexity

 Complexity (D)

Maturity M 8 9 10 11 12 13 14 15
SRR (Mean) 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09

SRR (Max.) 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29

156

F.3 HACS effort calculation
System-level cost estimates, using either the productivity table approach or
from the Electronic Systems Center (ESC) model, can quickly produce
credible “ballpark” estimates. Note, quickly does not equate to simply. This
case study will use both methods in parallel so the results can be compared.
The effort projection is normally computed from the mean size growth value.
This value represents the 50 percent probability of completion and is the best
calculation for a realistic estimate. The baseline size is considered an
optimistic, or zero growth, estimate.

The ESC estimating approach requires the software subsystems be assigned
a reliability level, as defined in Section 4.4.2 of this guidebook. The HACS
software subsystems generally fall into the high reliability category with the
exception of the Brain, which falls into the very high category and Solitaire,
which is at or below the low category.

Each subsystem contains CSCIs with different ratings. Each CSCI within a
subsystem is required to interface with one or more CSCIs as part of a
composite system. The interaction includes both internal interfaces as well
as interfaces to external systems. The number of integrating CSCIs is
defined as the total number of CSCIs in the project. ESC formed three
categories based on the number of integrating CSCIs and the required
reliability level for their productivity analysis as shown in Table F-8.

The second criterion for the ESC productivity value selection is the number
of CSCIs that interface with the selected CSCI. We lack the information to
determine the number of CSCIs that will ultimately be part of HACS. As a
precaution, it is assumed that the number of interacting CSCIs will be
between 5 and 10.

Table F-9: Productivity values for military applications by category

Project Type
Productivity
(SLOC/PM)

Productivity
Factor

(KSLOC/PM)

Productivity
Range

(SLOC/PM)

Standard
Deviation

(SLOC/PM)

All Programs 131.7 7.60 n/a n/a

Category 1 195.7 5.10 116.9 – 260.8 49

Category 2 123.8 8.08 88 – 165.6 23.6

Category 3 69.1 14.47 40.6 – 95.2 16.5

Table F-8: Definition of complexity/reliability categories

 Integrating CSCIs

Reliability 0 - 6 CSCIs 7 - 10
CSCIs > 10 CSCIs

Very low - nominal
(Moderate loss)

Category 1 Category 1 No Data

High
(Major financial loss)

Category 2 Category 2 Category 3

Very high
(Public safety required)

Category 2 Category 3 Category 3

157

The ESC productivity values for each of the HACS software subsystems are
drawn from Table F-9. The HACS productivity values from the ESC data
are shown in Table F-10 for each of the software subsystems.

The effort analysis (estimate) for each of the HACS subsystems using the
ESC system-level estimating approach is shown in Table F-11. This analysis
includes effort estimates for both mean and maximum growth effective size
estimates.

The productivity factor approach requires that we compare each of the
HACS subsystems with the 13 system types shown in Table 7-1 to provide
meaningful productivity factors for these types of systems. Our system types
do not match any of the 13 types directly, so we must select the closest
approximation that is consistent with the assigned complexity values. For
example, the HACS Brain subsystem has a complexity value of 10 and a size
value greater than 250 thousand effective source lines of code (KESLOC).
The Brain approximates the System/Driver category of Table 7-1. The
associated productivity value is 83 ESLOC/PM. This procedure must be
applied to each of the HACS subsystems.

The productivity table assumes an average development organization
operating in a normal environment. We can make subjective adjustments to
the factors to compensate for application experience. D represents the
complexity value that is typical for that software type.

Table F-11: Comparison of the development cost with mean effective size growth and maximum size growth
using the ESC productivity model

Task Name Productivity
(SLOC/PM)

Size, Eff
mean

Develop
(PM)

Size, Eff
Maximum

Develop
(PM)

Variance
(percent)

User Info Database 124 5,650 45.6 7,300 58.9 29.2

System Manager 124 260,610 2,101.7 359,160 2,896.5 37.8

Control Data Links 124 371,200 2,993.5 496,000 4,000.0 33.6

Brain 69 222,640 3,226.7 316,480 4586.7 42.1

Sensors 124 182,120 1,468.7 243,350 1,962.5 33.6

Solitaire 195 85,840 440.2 114,700 588.2 33.6

OS (APIs) 124 64,130 517.2 91,160 735.2 42.2

System Total 1,192,190 10,793.6 1,628,150 14,828.0 37.4

Table F-10: Productivity values for the HACS at the start of
requirements review (SRR) derived from the ESC database

Task Name
Size, Eff
 Mean

Growth
Category Productivity

Factor

User Info Database 5,650 2 124

System Manager 260,610 2 124

Control Data Links 371,200 2 124

Brain 222,640 3 69

Sensors 182,120 2 124

Solitaire 85,840 1 195

OS (APIs) 64,130 2 124

System Total 1,192,190

158

The productivity values for each HACS subsystem extracted from the
productivity table are shown in Table F-12, column 2. The results of the
individual HACS subsystem estimates obtained from the productivity table
are summarized in Table F-12 for both mean and maximum growth,
assuming the project maturity for each subsystem is established at SRR. The
differences in the results of the ESC-based analyses (Table F-11) and the
productivity table analysis (Table F-12) are not significant except for the
User Info Database. The mean growth effort estimate of 10,794 PM obtained
using the ESC approach is two percent less than the 11,005 PM in Table F-
12 estimated using the productivity table approach. Some differences are
not surprising since the sources of the two models are very different.

F.4 HACS Reality check
The easiest way to demonstrate the mechanics of a reality check is by
example. Of course, “real” historical data is not available for the
hypothetical HACS project to use in a reality check. To compensate for this
reality problem, we assumed that an analysis of HACS at the component
level will provide a pseudo-real level of effort; that is, a more accurate effort
estimate. The detailed analysis is, theoretically, more accurate than the
system-level analysis because it allows the environment and the specific
CSCI products to be described. For this purpose, we continue our HACS
example and delve into the reality of two estimates at the system level.
Table F-13 contains a detailed component-level analysis of the HACS effort
estimate for the maximum size projection. This detailed analysis is used as
the basis for our pseudo-reality check. The detailed estimate is reported at
the system level. In reality, the Component columns will be replaced by data
from a historical database.

A cursory glance at the estimate shows productivity values that are
reasonable and shows effort values that are roughly proportional to size. In
most cases, the development effort in Table F-13 from the component-level
analysis is close to the system-level HACS estimate. One cannot expect a
perfect match, but the projections should be reasonably close. The
difference between the estimate and the validation data for the nominal case
is not serious. The effort of the detailed validation estimated was 16,115.2
PM against the original estimate of 17,329.8 PM, a difference of only 7
percent.

Table F-12: Comparison of the development cost with mean effective size growth
and maximum size growth using the productivity table model

Task Name
Productivity

mean
(ESLOC/PM)

Size, Eff
mean

Develop
(PM)

Productivity
max

(ESLOC/PM)
Size, Eff

Maximum
Develop

(PM)
Variance
(percent)

User Info Database 350 5,650 16.1 350 7,300 20.9 29.8

System Manager 83 260,610 3,139.9 83 359,160 4,327.2 37.8

Control Data Links 125 371,200 2,969.6 125 496,000 3,968.0 33.6

Brain 83 222,640 2,682.4 83 316,480 3,813.0 42.1

Sensors 135 182,120 1,349.0 125 243,350 1,946.8 44.3

Solitaire 330 85,840 260.1 290 114,700 395.5 52.1

OS (APIs) 109 64,130 588.3 100 91,160 911.6 55.0

System Total 114 1,192,190 11,005.4 94 1,628,150 17,329.8 57.5

159

F.5 HACS development effort allocation
The distribution of effort varies with the effective size of the system. The
larger the system the more effort will be spent in system test and integration.
The relative effort spent in creating the architecture increases with size as
well. The rough effort distribution as a function of source size is presented
in Table F-14. See Section 4.7 of this guidebook for details about the table
values.

The next step in the HACS effort estimate is to determine the effort to be
assigned to each of the development and integration activities. The system
test effort percentage corresponds to the value k specified in the following
equation (F-4). The total effort is computed from the relationship

DevelopTotal EkE ×= (F-4)

where ETotal is the effort including both full-scale development and the
CSCI integration effort,

EDevelop is the full-scale development effort, and

k = 1.21 to 1.40 (an additional 21 to 40 percent effort) depending on
the anticipated system integration difficulty (more CSCIs and more
data passing between CSCIs makes the integration more difficult).

The value of k from the highlighted columns in Table F-14 will be used to
calculate the total effort for each development task. For example, using a

Table F-14: Total project effort distribution as a function of product size

Size
(KSLOC)

Activity

Rqmts
(%)

High Level
Design (%)

Develop
(%)

Sys Test
(%)

Mgt
(%)

1 4 12 77 17 11

25 4 20 67 24 13

125 7 22 63 25 15

500 8 25 56 32 19

Adapted from McConnell, 2006; Putnam and Myers, 1992; Jones, 2000; Boehm et
al, 2000; Putnam and Myers, 2003; Boehm and Turner, 2004; Stutzke, 2005.

Table F-13: Comparison of the worst case (95%) cost analysis of the HACS software from a detailed component-
level analysis and a productivity factor (system level) analysis

 Component Productivity Factor

Task Name Size, Eff Cplx
(D)

Develop
(PM)

Productivity
(ESLOC/PM)

Develop
(PM)

Productivity
(ESLOC/PM)

User Info Database 7,300 13 36.1 202 20.9 350

System Manager 359,160 11 3,627.9 99 4,327.2 83

Control Data Links 496,000 12 4,203.4 118 3,968.0 125

Brain 316,480 10 4,276.8 74 3,813.0 83

Sensors 243,350 12 2,339.9 104 1,946.8 125

Solitaire 114,700 12 955.8 120 395.5 290

OS (APIs) 91,160 10 675.3 135 911.6 100

System Total 1,628,150 16,115.2 101 17,329.8 94

160

size of 25 KSLOC, adding the 4 percent for requirements effort and 24
percent for system test, results in a value for k of 1.28. The total effort is the
sum of the development effort, the requirements analysis effort and the
system test effort. Development effort includes high-level design,
developing the software (code and test), and management efforts.

A commercial standalone software product development can entail zero
system integration. A typical k actor is in the range of 1.21 to 1.40 for
normal system integration requirements.

The information in Table F-14 is used to roughly allocate the HACS effort
defined in Table F-12 to the individual software activities. For this case
study, we will use the nominal (mean growth) development effort.

Note the staffing profile for each of the subsystem developments roughly
matches the Rayleigh-Norden staffing profile. It can be seen in Table F-15
as an increasing level of effort through the full-scale development with a
decrease after delivery of the software to system test and integration. This is
normal for all successful software development projects.

The nominal HACS system development effort distribution is shown in
Table F-15. The system total effort of 14,432.1 PM is greater than the sum
of the individual development totals (11,005.4) because the requirements and
system test are added to the system development total.

Remember, the system-level estimating model does not allow for the
prediction, or projection, of a software development schedule. The schedule
can only be produced when the system has been decomposed to the
component (CSCI) level and estimated using a component-level estimating
technique.

F.6 HACS maintenance effort calculation
Let’s look again at the nominal (mean) estimate for the HACS illustrated in
Table F-12. The system development has been completed and delivered to
the customer. There are still significant errors being uncovered in the
operation, but they are decreasing as the software matures. Once the system
stabilizes, from an error point of view, we assume about 8 percent of the
software to be modified each year of operation to allow for enhancements
(corrective, adaptive, and perfective) and knowledge retention. The
maintenance functions will be performed by the software developer. What is
the maximum annual effort necessary to support these requirements?

Table F-15: Total project effort distribution for the nominal HACS software development

Task Name Total
(PM)

Rqmts
(PM)

High-Level
Design (PM)

Develop
(PM)

Sys Test
(PM) Mgt (PM)

User Info Database 19.5 0.6 2.0 12.4 2.7 1.8

System Manager 4,144.7 219.8 690.8 1,978.1 785.0 471.0

Control Data Links 3.919.9 207.9 653.3 1,870.8 742.4 445.4

Brain 3.540.8 187.8 590.1 1,689.9 670.6 402.4

Sensors 1,780.7 94.4 296.8 849.9 337.2 202.4

Solitaire 314.7 10.4 31.2 200.3 44.2 28.6

OS (APIs) 711.8 23.5 70.6 453.0 100.0 64.7

System Total 14,432.1 744.4 2,334.8 7,054.4 2,682.1 1,616.3

161

Table F-13 contains the additional complexity and productivity information
necessary to project the annual maintenance effort, assuming the
development staff is available to support the maintenance tasks. That is, the
environment and development capability will be relatively constant and
productivity will not need to be adjusted for the maintenance calculations.

The maintenance effort calculations (enhancement, knowledge retention, and
steady state maintenance) are made using the Equations (4-4) through (4-6)
in Section 4.8 of this guidebook. The productivity figures in Table F-16 are
extracted from Table F-13 for the maximum software growth condition.
These productivity values are more conservative (lower) than the values that
would be extrapolated from the mean growth productivity and yields a
conservative maintenance effort.

Applying Equations (4-4) through (4-6) to each of the major subsystems
yields the anticipated annual maintenance effort for the system. Note the
System Manager and Brain are dominated by the Annual Change Traffic
effort and the remaining subsystems are driven by the number of people
needed to retain operational system knowledge. The bulk of the personnel
will come from the operational knowledge staff. The two elements, singled
out in the maintenance calculation, will have to add staff to assure support
for the enhancements and modifications. The annual maintenance effort is
projected to be approximately 1,019 person months per year of operation.
The time at which the maintenance costs balance the development effort of
11,005 PM is near 10 years. Maintenance effort can match the development
effort in as few as five years, depending on the program quality and change
traffic. Therefore, this maintenance effort estimate is relatively modest.

Table F-16: Maximum effort analysis of the HACS Communication System from a productivity factor
(system level) analysis including annual maintenance effort

 Productivity Factor

Task Name Size, Eff Cplx
(D)

Develop
(PM)

Prod
(ESLOC/PM)

Maintenance
(PM/YR)

User Info Database 5,650 13 16.1 350 4.0

System Manager 260,610 11 3139.9 83 250.6

Control Data Links 371,200 12 2969.6 125 284.9

Brain 222,640 10 2682.4 83 214.7

Sensors 182,120 12 1349.0 125 139.8

Solitaire 85,840 12 260.1 290 65.9

OS (APIs) 64,130 10 588.3 100 59.0

System Total 1,192,190 11,005.4 114 1,018.9

162

Appendix G
Component-Level Estimate Case

Study
There are two fundamental estimating processes for software development:
component and system. The component estimating process is generally used
after details are available for the system, such as architectural design. At this
point in time, the system definition will have functional component
requirements defined (Software Requirements Specifications -- SRSs) and
the interfaces between components defined (Interface Control Documents --
ICDs). The developer may be known at this time, or at least the developer
class will be known well enough that the typical characteristics can be
defined.

The material in this appendix demonstrates developing estimates at the
component level and is supported by the same case study introduced in
Appendix F. Evolving fragments of the estimate will be updated as each
step, or portion of a step, is completed. The Hierarchical Autonomous
Communication System (HACS) system contains several components
(CSCIs).

G.1 HACS baseline size
estimate
HACS has been created or, rather, translated as a
demonstration vehicle for the cost estimation process.
The system contains several subsystems that have been
refined to the component (CSCI) level. The component
size information at the start of the estimate is shown in
Table G-1.

The Cost Analysis Requirements Description (CARD)
specifies the Control Data Links, with a forecast
baseline size of 320,000 effective source lines of code
(ESLOC), and the User Info Database, specified in
function points (FPs). Since the effective size of the
Control Data Links subsystem is too large to be
developed as a single CSCI (i.e., > 200,000 effective
source lines of code [ESLOC]), a realistic component-
level estimate cannot be completed without further
decomposition. Some estimating tools, however, allow
a CSCI to be greater than 200,000 ESLOC, but the
estimate results will be questionable since insufficient
historical data exists (little to none) to support the tools
in this size region. Also, since FPs are involved in the
system size specification, they must be converted to
ESLOC before the estimate can proceed77

CARD specifications place the HACS software
subsystems generally into the High reliability category

.

77 The information regarding the conversion of function points to SLOC in this
section is essentially a duplicate of the conversion described in Section 6.

An estimate is the most optimistic
prediction that has a non-zero
probability of coming true.

 Tom DeMarco

Table G-1: Baseline description of the HACS Communication
System at the start of requirements review (SRR)

Task Name Size, Eff
Baseline Cplx Units

User Info Database
(DB) n/a 13 FP

 Glue code for DB n/a 13 FP

 DB Configuration n/a 0 FP

System Manager 219,000 11 ESLOC

Control Data Links 320,000 12 ESLOC

Satellite 152,000 12 ESLOC

Transmitter 96,000 12 ESLOC

Receiver 56,000 12 ESLOC

Radio 84,000 12 ESLOC

Fiber link 84,000 12 ESLOC

Brain 184,000 10 ESLOC

Sensors 157,000 12 ESLOC

Solitaire 74,000 12 ESLOC
Operating System
(OS) Application
Program Interfaces
(APIs)

53,000 10 ESLOC

System Total 1,012,000 ESLOC

163

with the exception of the Brain, which falls into the Very High category, and
Solitaire, which is at or below the Low category.

The system-level estimate of the HACS example in Appendix F assumed the
major subsystems were defined at only the system level. From that level, a
“ballpark” estimate for the entire HACS software product was constructed.
It was impossible to create a component level estimate because several of the
subsystems were above the “magic” 200,000 ESLOC CSCI size limit. In
this estimate, the components (CSCIs) have been defined, and a more refined
and accurate estimate can be constructed for the development.

The expanded portion (to the CSCI level) is shown in the white and yellow
areas of Table G-1. The nominal analysis assumes the estimate is being
made at the time of the Software Requirements Review (SRR) and effective
size reflects the baseline level of software growth. For example, the baseline
size of the Brain software contains 184,000 ESLOC. Note the Brain baseline
size is near the 200,000 ESLOC limit and can create problems as the
estimate progresses if growth and/or risk are involved.

G.2 HACS size estimate
Size is the most important effort (cost) and schedule driver in any software
development estimate. Size information early in a project is seldom, if ever,
accurate. Information presented in a CARD is generally predicted during a
concept development phase prior to the start of full-scale development (pre-
Milestone B). Size information is often represented by a single value which
leads to a point cost and schedule estimate. However, the information may
be more accurately expressed as three values representing a minimum (most
optimistic), a most likely, and a maximum (most pessimistic), to give a more
realistic picture of the software size information.

The HACS User Info Database software is initially specified as FPs for the
development estimate. The unadjusted function point (UFP) count is shown
in Table G-2. Since FPs are involved in the system size specification, they
must be converted to SLOC before the estimate can proceed to the ultimate
specification of the system size. The FP values in the table have been
derived from the HACS specification. The UFP count for the Info Database
task is 84.

The next step in the equivalent baseline software size calculation for the
HACS User Info Database is to adjust the FP size to account for differences

Table G-2: HACS Info Database unadjusted function point calculation

Component Types
 Ranking

Total
Low Average High

Internal Logical File 1 1 0 17

External Interface File 1 3 0 26

External Input 2 3 0 18

External Output 0 3 0 15

External Inquiry 0 2 0 8

Transform 0 0 0 0

Transition 0 0

Unadjusted Function Points 84

164

between the database characteristics and the normal characteristics assumed
by the UFP count. This involves adjusting the UFP count by the General
System Characteristics (GSCs) Value Adjustment Factor (VAF) rating.
Once the 14 GSCs for the database have been evaluated, as demonstrated for
HACS in Table G-3, the value adjustment factor can be computed using the
IFPUG VAF equation. The equation is

+= ∑

=
100/65.0

14

1i
iGSCVAF (G-1)

where GSCi = degree of influence for each GSC, and
 i = 1 to 14 representing each GSC.

The resulting score will be between 0.65 and 1.35, depending on the sum of
the individual ratings. The sum of the GSCs for the database is

43
14

1
=∑

=i
iGSC

The VAF result for the HACS Info Database is then

VAF = 1.08

The adjusted function point (AFP) count is obtained by multiplying the VAF
times the UFP count. The standard AFP count is given by

UFPVAFAFP ×= (G-2)

The AFP count for the HACS Info Database is

 AFP = 1.08 x 84 = 91 FPs.

The conversion of FPs (UFP or AFP) to equivalent total SLOC is
accomplished by multiplying AFP by a scaling factor (backfire factor [BF])
to produce the total size as

BFAFPSt ×= (G-3)

where St = total software SLOC count,
AFP = adjusted FP count, and

 BF = SLOC/FP backfire factor from Table 6-17

or,

1.08 x 84 x 55 = 5,000 (approximately) total SLOC.

Table G-3: HACS GSC ratings

No. General Characteristic Value No. General Characteristic Value

1 Data communications 0 8 Online update 5

2 Distributed data processing 4 9 Complex processing 0

3 Performance 3 10 Reusability 0

4 Heavily used configuration 4 11 Installation ease 4

5 Transaction rate 5 12 Operational ease 5

6 Online data entry 5 13 Multiple sites 4

7 End-user efficiency 0 14 Facilitate change 4

165

The resulting User Info Database effective size for the HACS software is
presented in Table G-4 assuming the implementation language for the User
Info Database is C++ and BF = 55. Note: the resulting source code value is
for baseline total source code. There is no pre-existing code assumed in this
value, and the computed equivalent size does not assume any size growth
during the project development.

The baseline size is the starting size for the effort analysis. The baseline
values from the CARD are summarized in Table G-4, column 2. These
values assume no software growth or difficulty during development. At the
concept level, the size is only a very rough estimate unless there is
considerable historic data to support the value.

G.3 HACS size growth calculation
The software requirements have been developed and the size projections
have been somewhat refined at this point in time. There has already been
some size growth since the concept phase of the development – this is
included in the current baseline. Our task is to project the growth from SRR
to delivery of the HACS product. The size information shown in Table G-4,
columns 2 and 3, represents the baseline size and complexity projected at the
beginning of SRR.

The size growth factors can be obtained from Table G-5 which has been
extracted from Tables 6-3 and 6-4. The growth factors are determined by the
complexity of the software product and from the maturity of the product at
the time the estimate is being made. The factors project the mean and
maximum product sizes at the end of development. The rows in Table G-5
correspond to a project maturity at the start of SRR.

Table G-4: Baseline description of the HACS Communication
System at the start of requirements review (SRR)

Task Name Size, Eff
Baseline Cplx Units

User Info Database

 Glue code for DB 5,000 13 Function Points

 DB Configuration

System Manager 219,000 11 ESLOC

Control Data Links 320,000 12 ESLOC

Satellite 152,000 12 ESLOC

Transmitter 96,000 12 ESLOC

Receiver 56,000 12 ESLOC

Radio 84,000 12 ESLOC

Fiber link 84,000 12 ESLOC

Brain 184,000 10 ESLOC

Sensors 157,000 12 ESLOC

Solitaire 74,000 12 ESLOC

OS (APIs) 53,000 10 ESLOC

System Total 1,012,000 ESLOC

166

The mean growth factor for the HACS User Info Database software with a
complexity value of 13 and SRR maturity is 1.13 or 13 percent. The mean
size growth factor78

650,5500013.1 =×=meanS

 is

 ESLOC (G-4)

The maximum growth factor for the HACS User Info Database software
with a complexity value of 13 and SRR maturity is 1.46, or 46 percent. The
maximum growth size is

7300500046.1max =×=imumS ESLOC (G-5)

Corresponding results for the remaining HACS components are shown in
Table G-6. The table assumes all components are in the same production
phase at the time of the estimate. The mean and maximum effective size
growth is computed from the baseline effective size.

The effort and schedule projections are normally computed from the mean
size growth value. This is the best calculation for a realistic estimate. The
probability of the baseline size existing at the end of development is very
small and the delivery schedule and development effort are unlikely.

78 The mean size growth factor is an example of an “exact approximation” that crops
up frequently in estimating. The information in Table G-5 is truncated to two
decimal places and produces a size estimate that is slightly different from the result
obtained from Equation 6-14. Remember that both numbers are approximations. For
simplicity we will use the tabular information for the size estimates in the examples.

Table G-6: Baseline description of the HACS Communication System at the start of requirements
development

Task Name Size, Eff
Baseline

Cplx

Size, Eff
Nominal

Growth Factor Size, Eff
Maximum Nom Max

User Info Database 5,000 5,650 7,300

Glue code for DB 5,000 13 5,650 1.13 1.46 7,300

DB configuration

System Manager 219,000 11 260,610 1.19 1.64 359,160

Control Data Links 320,000 12 371,200 496,000

Satellite 152,000 12 176,320 223,201

Transmitter 96,000 12 111,360 1.16 1.55 140,969

Receiver 56,000 12 64,960 1.16 1.55 82,232

Radio 84,000 12 97,440 1.16 1.55 123,348

Fiber link 84,000 12 97,440 1.16 1.55 123,348

Brain 184,000 10 222,640 1.21 1.72 316,480

Sensors 157,000 12 182,120 1.16 1.55 243,350

Solitaire 74,000 12 85,840 1.16 1.55 114,700

OS (APIs) 53,000 10 64,130 1.21 1.72 91,160

System Total 1,012,000 1,192,190 1,628,150

Table G-5: Software growth projections as a function of maturity (M) and complexity.

 Complexity

Maturity M 8 9 10 11 12 13 14 15
SRR (Mean) 52 1.26 1.24 1.21 1.19 1.16 1.13 1.11 1.09

SRR (Max) 52 1.89 1.81 1.72 1.64 1.55 1.46 1.38 1.29

167

The nominal effective size that will be used in the HACS cost and schedule
calculations corresponds to the mean product size growth. The baseline size
is considered an optimistic, or zero growth, estimate.

G.4 HACS environment
The next step in the HACS component-level estimate is an evaluation of the
software environment. This evaluation is conducted in two parts: (1) an
estimate of the developer capability of each subsystem, or in the case that a
single contractor (developer) may be responsible for multiple subsystems, an
estimate of each developer’s capability, and (2) an estimate of the remaining
environment factors for each CSCI that are impacted by the HACS product
development. Each CSCI can have a unique set of experience, development
system, management, and product factors.

G.4.1 HACS developer capability
The HACS development organization is assumed to employ
an average development staff located in a facility with a
typical cubical arrangement. The application experience of
the development team is an average of 3 to 5 years in systems
similar to HACS. The CMMI rating is Level 2 and preparing
for a Level 3 evaluation. The hardcopy turnaround time, a
measure for computing resource access, is less than 30
minutes. Terminal response time is approximately 500
milliseconds. The series of calculations—outlined earlier in
Section 5.4.4, Equation (5-4)—yields a basic technology
constant for the HACS software development organization.
The HACS basic technology rating results are shown in
Table G-7.

G.4.2 Personnel evaluation
The personnel in the HACS project, shown in Table G-8,
are assumed to be trained in the development system and
associated practices. A value of 1.0 indicates no impact
on the development. There is an average experience level
of slightly less than two years using the development
system. There are no changes in development practices
planned during the development; hence, there is no
impact. Process improvement would increase the
practices experience (PEXP) value if the development
organization imposed development practices on the
project. The process changes will not impact this project.
The programmers are masters of the required
programming language. In this example, the language is C++.

The HACS management factors show actions that will have an impact on
productivity. The development organization will be using personnel from
other organizations, and the software development will be accomplished
with the development people spread across multiple sites in close proximity.
The combined impact (product) of these parameters (MORG and MULT)
amounts to approximately an 18 percent productivity penalty.

Table G-8: Personnel parameter values for HACS estimate
Parameter Value

Development system experience - DEXP 1.01

Programming language experience - LEXP 1.00

Development practices experience – PEXP 1.00

Target system experience - TEXP 1.00

Multiple organizations - MORG 1.10

Multiple development sites - MULT 1.07

Table G-7: Parameter values for basic capability estimate
calculation

Parameter Value

Analyst capability – ACAP 1.00

Application domain experience – AEXP 0.89

Programmer capability – PCAP 1.00

Use of modern practices – MODP 1.04

Automated tool support – TOOL 1.03

Hardcopy turnaround time – TURN 0.93

Terminal response time – RESP 1.00

Basic Technology Constant 6474

168

G.4.3 Development environment
The HACS development environment is the third project environment area
of interest. The environment parameters determine the impact of the
stability and availability of the environment; that is, the volatility of the
development system and associated practices, the proximity of the resource
support personnel, and access to the development system.

The HACS development practices are expected to
experience minor changes on a monthly average during the
development due to process improvement. Process
improvement should ultimately improve productivity, but
will decrease productivity in the short term until the new
practices stabilize. The development system will show
productivity loss during system updates that will also
occur on a monthly average. These are normal conditions.
The resource and support personnel are not located in the
software development areas, but are within 30 minutes in
case of system or compiler problems. System access is
100 percent of the first shift workday, so there will be no
impact due to limited access. The HACS development
environment parameter values are shown in Table G-9.

The combined impact on development productivity of this parameter group
is approximately 25 percent beyond the ideal environment. The individual
parameter ratings are described in more detail in Section 8 of this guidebook.

G.4.4 HACS product impact
The fourth environment factor group is used to evaluate
the impact of the product characteristics and constraints
on the project productivity. The information in this group
is reasonably constant for a given product type, and can
be collected in a template that may have only a few
changes within the product type due to specific product
implementations. Within the HACS system, as shown in
Table G-10, there are several CSCI types that could be
defined as multiple product templates for the effort and
schedule analysis.

The HACS project requires all development personnel to
have the same security clearance level so there is no
productivity loss due to the personnel working across
security boundaries. The system requires a user-friendly
interface which results in more complicated design and
test activities; thus, a penalty of 5 percent is specified.
There are no hardware re-hosting requirements. The
product is not memory constrained and there are no real-
time requirements or timing constraints. The Common
Criteria Evaluation Assurance Level (CC EAL) rating79

79 The CC for Information Technology Security Evaluation is an international
standard (ISO/IEC 15408) for computer security.

for the product is Level 1 except for the Brain (a complex
system/driver or process control function), which has a CC EAL rating of
Level 4. The target system is in common use and is stable. The required
reliability for the development is satisfied by following the ISO/IEC 12207

Table G-9: Development environment parameter values for
HACS estimate

Parameter Value

Practices volatility - PVOL 1.08

Development support location - RLOC 1.08

Development system volatility - DVOL 1.07

Development system dedication - RDED 1.00

Table G-10: Product impact parameter values for HACS
estimate

Parameter Value

Multiple security classification - MCLS 1.00

Special display requirements - DISP 1.05

Dev. To Target system rehost - HOST 1.00

Target memory constraints - MEMC 1.00

Product quality requirements - QUAL 1.03

Real-time requirements - RTIM 1.00

Requirements volatility - RVOL 1.15

Software security requirements - SECR 1.00 - 1.34

Product development standards - SPEC 1.21

Product test requirements - TEST 1.05

Product timing constraints - TIMC 1.00

Target system volatility - TVOL 1.00

169

standard. The penalties corresponding to the ISO standard are specified in
the QUAL, SPEC and TEST parameters.

The requirements volatility definition we will follow for the HACS software
is “known product with occasional moderate redirection,” since the product
will have some functionality improvements beyond the existing products.

The combined productivity impact beyond the ideal environment is 58
percent for the bulk of the system, but 112 percent for the Brain. The
penalties may seem high at first glance, but the change is from the ideal
which does not occur in practice. The individual parameter ratings are
described in more detail in Section 8 of this guidebook.

G.4.5 HACS effective technology constant
The productivity factor for Jensen-based models is the effective technology
constant Cte defined in more detail in Section 5.4.5, Equation (5-5). This
equation combines the basic technology constant with the product of the
development environment factors if . The resulting productivity factor is

∏
=

i
i

tb
te f

C
C (G-6)

The median productivity factor Cte for the HACS software development is
computed to be

150,3
)18.125.158.1(

474,6
=

××
=teC (G-7)

The mean value, considering the worst case value of 3,150, is
shown in Table G-11. The effective technology constant for
the Brain is 2,351, a 34 percent drop compared to the bulk of
the system. This is due to the EAL security rating of Level 4.
The HACS technology constant values are shown in Table G-11.

A 2:1 ratio of the basic and effective technology constants is common. It is
not uncommon for ratios of 4:1 to exist for highly constrained or secure
software systems.

G.5 HACS development effort and
schedule calculations
The cost analysis of the HACS software is conducted at the component
(CSCI) level and rolled up into the next higher level. For example, the
Transmit and Receive components are estimated and rolled up into the
Satellite super component. The Radio and Fiber Link components are
estimated and rolled up with the Satellite into the Control Data Links
subsystem. Each of the components is within the range of 5,000 to 200,000
ESLOC (except for the System Manger and the Brain) and compatible with
the limitations of the estimating models and reality. Some estimating models
allow component sizes greater than 200,000 ESLOC, but reality places a
limit of 200,000 ESLOC on deliverable software components.

The result of the HACS estimate under mean software growth conditions is
presented in Table G-12. The worst case growth estimate is contained in

 Table G-11: Technology constant values for HACS estimate

Parameter Value

Basic technology constant - Ctb 6,474

Effective technology constant - Cte 3,150 / 2,351

170

Table G-13. The calculations for these estimates were performed by the
Sage 3 estimating tool which is based on the Jensen II model.

Table G-12: Nominal effort and schedule (in months) analysis of the HACS at the component (CSCI) level

Task Name Ctb Cte Size, Eff Cplx Develop
(PM)

Total
Effort
(PM)

Prod
(ESLOC/PM)

Dev
Sched
(mo)

Total
Sched
(mo)

User Info Database 5650 13 30.7 46.6 212.6 9.0 12.0

Glue code for DB 6416 3150 5650 13 26.7 38.6 212.6 9.0 12.0

DB Configuration 4.0 8.0 3.0 4.0

System Manager 6416 3150 260,610 11 2455.9 3544.2 105.8 43.4 57.7

Control Data Links 371,200 12 2,973.2 4290.6 125.5 30.4 40.4

Satellite 6416 3150 176,320 12 1403.6 2025.6 127.9 30.4 40.4

Transmit 6416 3150 111,360 12 921.2 1329.4 121 30.4 40.4

Receive 6416 3150 64,960 12 482.4 696.2 134.8 24.5 32.6

Radio 6416 3150 97,440 12 784.8 1132.5 124.3 28.8 38.3

Fiber Link 6416 3150 97,440 12 784.8 1132.5 124.3 28.8 38.3

Brain 6416 2351 222,640 10 2795.0 4033.6 79.8 46.8 62.2

Sensors 6416 3150 182,120 12 1622.2 2398.8 109.7 37 49.2

Solitaire 6416 3150 85,840 12 674.0 972.7 127.5 27.4 36.4

OS (APIs) 6416 3150 64,130 10 441.8 637.6 145.3 25.3 33.6

System Total 1,192,190 10,992.8 15,924.1 106.6 43.4 57.7

Table G-13: Worst-case effort and schedule analysis of the HACS at the component (CSCI) level

Task Name Ctb Cte Size, Eff Cplx Develop
(PM)

Total
Effort
(PM)

Prod
(ESLOC/PM)

Dev
Sched
(mo)

Total
Sched
(mo)

User Info Database 7321 13 40.2 60.3 202 13.1 17.4

Glue code for DB 6474 3150 7321 13 36.2 52.3 202 10.1 13.4

DB Configuration 4.0 8.0 3.0 4.0

System Manager 6474 3150 358,309 11 3612.0 5212.6 99.2 49.3 65.6

Control Data Links 496,035 12 4205.3 31,854.8 118.4 34.1 45.4

Satellite 6474 3150 235,617 12 1985.3 2865.1 120.7 34.1 45.4

Transmit 6474 3150 148,811 12 1302.9 1880.3 114.2 34.1 45.4

Receive 6474 3150 86,806 12 682.4 984.8 127.2 27.5 36.6

Radio 6474 3150 130,209 12 1110.0 1601.9 117.3 32.3 43

Fiber Link 6474 3150 130,209 12 1110.0 1601.9 117.3 32.3 43

Brain 6474 3150 316,869 10 4262.5 6151.4 74.3 53.8 71.6

Sensors 6474 3150 243,368 12 2351.1 3393.0 103.5 41.5 55.2

Solitaire 6474 3150 114,708 12 953.4 1375.9 120.3 30.8 40.9

OS (APIs) 6474 3150 91,272 10 673.7 972.3 135.5 29.1 38.7

System Total 1,627,882 16,094.2 47,198.5 101.2 49.3 65.6

171

There are two important items to note in Tables G-12 and G-13. First, a
fixed effort is added to the User Info Database CSCI that is not estimated
using the system- or component-level approaches described in Sections 4
and 5. The addition is included to account for the effort required to
configure the database.

Second, nominal (Table G-12) Brain component size is 222,640 ESLOC,
which violates the reality size constraint and has an estimated schedule of
62.2 months, which violates the reality schedule constraint. Table G-13
Brain size is 316,869 ESLOC, which has a very small probability of success
if built as identified based on historical data. The estimate of this component
is outside the data upon which the estimating models and tools have been
built.

G.6 Verify HACS estimate realism
The easiest way to demonstrate the mechanics of a reality check is by
example. Table G-12 contains the HACS effort and schedule estimate at the
component level for the most likely size projection. Since there is no
historical data available for the reality check, we will use the Productivity
Factor Table (from the earlier Section 4.4.1, Table 4-5), which is based on a
collection of historical data. The two components of the satellite subsystem
within the Control Data Links are typical telecommunication systems.
Without interpolating between columns in the table, the nearest size column
is 100K ESLOC. The Transmit component has an estimated productivity of
114 ESLOC/PM and the Receive component productivity is 127
ESLOC/PM. The table reference productivity of 100 ESLOC/PM is within
27 percent of the two estimated productivity values. This error is not
excessive considering that the values in the table do not reflect the developer
or the development environment for the HACS project. The productivity
table does not allow any comparison of the estimated schedules for reality
check purposes.

A cursory glance at the estimate shows nominal productivity and effort
values which are roughly proportional to size. However, the schedule values
are inconsistent; that is, the longest and shortest schedules are not
proportional.

In most cases, the effort in Table G-12 does not disagree greatly with the
system level HACS estimate using the productivity factor data from Table 4-
5. One cannot expect a perfect match, but the projections should be
reasonably close.

The System Manager and the brain are larger than the 200K ESLOC limit
assuming mean growth. At this point in the development, this can occur due
to two basic reasons. First, the detailed requirements allocations have not
been identified and therefore we are creating an effort (cost) allocation for
the subsystem. The second reason is that there are classified components in
this subsystem and to keep the document unclassified, the requirements are
not detailed. Care must be taken in either case that these CSCIs are
carefully tracked to ensure that they do not derail the project.

CSCIs with an effective size larger than 200,000 ESLOC are likely to be
undeliverable although there are exceptions to every rule. The HACS
system as a whole fits the telecommunication category task better than any
other. We must apply judgment to the subsystems in the HACS system
using the modified McConnell data. For example, the Brain task is most like

172

an embedded system but is beyond the 200K ESLOC boundary. If we
extrapolate the Brain productivity to the 250K ESLOC column, we would
find that the estimated productivity of 74 ESLOC/PM is within 11 percent of
the 83 ESLOC/PM entry in Table 7-1.

The Brain and the System Manager CSCIs exceed the 200 KESLOC size
limit. Persisting with the current composition of the Brain and System
Manager are likely to create undeliverable products. The schedule for the
Brain as an example, assuming it is a single CSCI, is almost 72 months, or
six years. Again, the schedule indicates a non-deliverable product because
we look for a schedule of five years or less. The Brain can (must) be
decomposed into smaller CSCIs which will, in turn, decrease the required
schedule by developing it in smaller components. The smaller components
will achieve higher productivity, which will improve the development effort
and delivery potential.

The Brain is a candidate for previously created and CC EAL certified
software (either GOTS or COTS) which could effectively reduce the size of
the subsystem.

A second part of any reasonable estimate is the consideration of risk.
Software risk often presents itself as an effective size increase. Table G-12
shows the HACS system estimate assuming mean size growth. Table G-13
shows the worst case size or risk projection.

G.7 Allocate HACS development effort
and schedule

G.7.1 HACS effort allocation
The distribution of effort varies with the effective size of the system. The
larger the system the more effort will be spent in system test and integration.
The relative effort spent in creating the architecture increases with size as
well. The rough effort distribution as a function of source size is presented

in Table G-14.

The next step in the HACS effort estimate is to assign the effort to each of
the development and integration activities. If system integration is to be
included in the total system development, the effort computed in the last step
must be increased to account for the total system development cost.

Table G-14: Total project effort distribution for the HACS software development

Task Name
Activity

Rqmts
(%)

High-Level
Design (%)

Develop
(%)

Sys Test
(%)

Mgt
(%)

User Info Database 4 10 64 17 9

System Manager 8 17 38 32 13

Control Data Links 8 17 38 32 13

Brain 8 17 38 32 13

Sensors 8 17 38 32 13

Solitaire 7 16 48 25 11

OS (APIs) 7 16 48 25 11

173

The total effort is computed from the relationship

DevelopTotal EkE ×= (G-8)

where ETotal is the effort including both full-scale development and the

CSCI integration effort,

EDevelop is the full-scale development effort, and

k = 1.21 to 1.32 depending on the anticipated system integration
difficulty.

The value of k from the highlighted columns in Table G-14 will be used to
calculate the total effort for each development task. For example, using a
size of 25 KESLOC, adding the 4 percent for requirements effort and 24
percent for system test results in a value for k of 1.28. The total effort is the
sum of the development effort, the requirements analysis effort and the
system test effort. Development effort includes high-level design,
development, and management efforts.

A commercial standalone software product development can entail zero
system integration. A typical k factor is in the range of 1.21 to 1.32 for
normal system integration requirements. In this example, the value of k from
the highlighted columns in Table G-14 will be used to calculate the total
effort for each development task.

The resulting effort allocation for the mean growth (nominal) condition is
summarized in Table G-15. The effort allocation process for the baseline
and maximum growth conditions are computed in the same fashion as the
mean growth condition.

Table G-15: Nominal effort allocation for the HACS Communication System at the component (CSCI) level

Task Name
Size, Eff
(Nominal
ESLOC)

Total
Effort
(pm)

Rqmts
(pm)

High-
Level

Design
(pm)

Develop
(pm)

Sys
Test
(pm)

Mgt
(pm)

User Info Database 5650 46.6 1.5 3.9 32.7 6.6 3.5

Glue code for DB 5650 38.6 1.5 3.9 24.7 6.6 3.5

DB Configuration 8.0 8.0

System Manager 259,804 3544.2 283.5 602.5 1,346.8 1,134.1 460.7

Control Data Links 371,561 4,290.6 300.4 686.5 2,059.5 1,072.6 472.0

Satellite 176,491 2025.6 141.8 324.1 972.3 506.4 222.8

Transmit 111,468 1329.4 93.1 212.7 638.1 332.3 146.2

Receive 65,023 696.2 48.7 111.4 334.2 174.1 76.6

Radio 97,535 1132.5 79.3 181.2 543.6 283.1 124.6

Fiber Link 97,535 1132.5 79.3 181.2 543.6 283.1 124.6

Brain 222,917 4033.6 322.7 685.7 1,532.8 1,290.8 524.4

Sensors 182,297 2398.8 167.9 383.8 1,151.4 599.7 263.9

Solitaire 85,923 972.7 68.1 155.6 466.9 243.2 107.0

OS (APIs) 64,210 637.6 44.6 102.0 306.0 159.4 70.1

System Total 1,192,392 15,924.1 1,199.5 2,643.8 6,655.9 4,674.4 1,949.5

174

Note that the effort allocation for the Brain and the System Manager are
suspect because the total effort calculation is derived from a faulty
assumption that the components are being developed as single CSCIs. The
sizes are beyond the 200,000 ESLOC limit for single CSCIs. The Brain and
System Manager each will likely be decomposed into at least two CSCIs
before the start of development. If they are not decomposed, they become
high risk developments.

The effect of CSCI complexity can be seen in Table G-15 as an increasing
level of effort through the full-scale development with a decrease after
delivery of the software to system test and integration. The total effort for
each task within the HACS project is incorporated in the total effort
requirements for the nominal HACS analyses. The total effort is computed
from the information in the project effort distribution table (Table G-14).

G.7.2 Schedule allocation
Schedule allocation depends on the effective size of the software system
AND the software development approach. A classic waterfall development
will meet schedule milestones at different times than an incremental or an
agile development. There are some guidelines that serve to place
approximate milestones for ballpark estimates. The broad schedule
breakdown is shown in Table G-16. Allocating milestones in the program
plan requires the number ranges to be reduced, again depending on the
development approach.

Using the schedule breakdown table described in Section 5.7.2, we see that
the baseline and mean and maximum growth sizes for the command and
control project are all close enough to the 125 KESLOC entry in that we can
apply the percentage allocation for each activity directly from the table. The
table is repeated here (Table G-16) for reference.

The overall schedule distribution for a project is based on the entire process
totaling 100 percent of the schedule. Judgment is necessary when selecting
the specific values from the table for the project in question. The percentages
in Table G-16 for the HACS project are enclosed in parentheses.

The schedule allocation for the HACS project is presented in Table G-17.
As with the effort allocation, the schedule allocation for both the Brain and

Table G-16: Approximate schedule breakdown as a function of product size

Size
(KSLOC)

Activity

Requirements
(Percent)

High-Level
Design

(Percent)

Development
(Percent)

System
Test

(Percent)

1 6-16 (6) 15-25 (20) 50-65 (55) 15-20 (19)

25 7-20 (7) 15-30 (19) 50-60 (52) 20-25 (22)

125 8-22 (8) 15-35 (18) 45-55 (49) 20-30 (25)

500 12-30 (12) 15-40 (15) 40-55 (43) 20-35 (30)

Sources: Adapted from McConnell, 2006; Putnam and Myers, 1992; Boehm et al,
2000; Putnam and Myers, 2003; Stutzke, 2005

175

System Manager are also suspect because of the extremely high effective
source size for the CSCI. The schedule allocation in Table G-17 can be used
as a conservative schedule estimate because the CSCI will undoubtedly be
decomposed into smaller CSCIs that will require a smaller total schedule.
The Brain and System Manager schedules of almost six years, assuming
worst-case growth, makes the CSCIs high-risk components that will likely
never be delivered in their present level of decomposition.

The HACS plan in Table G-17 assumes all tasks are started at completion of
the requirements review; phasing is not accounted for in the table. A
dependency of one task on another task’s completion is not accounted for in
this table. In practice, each task is independently programmed on a master
schedule for planning purposes.

G.8 Allocate HACS maintenance effort
Let’s look again at the nominal estimate for the HACS Communication
System as illustrated in Table G-12. The system development has been
completed and delivered to the customer. There are still significant errors
being uncovered in operation, but they are decreasing as the software
matures. Once the system stabilizes from an error point of view, we expect
about 8 percent of the software to be modified each year of operation to
allow for enhancements and operational refinements. The maintenance
functions will be performed by the software developer. What is the annual
effort necessary to support these requirements?

Table G-12 contains the complexity information necessary to project the
annual maintenance effort, assuming the development staff is available to

Table G-17: Nominal schedule allocation for the HACS at the component (CSCI) level

Task Name
Size, Eff
(Nominal
ESLOC)

Total
Schedule

(mo)
Rqmts
(mo)

High-
Level

Design
(mo)

Develop
(mo)

Sys
Test
(mo)

User Info Database 5680 12.1 0.7 2.4 6.7 2.3

Glue code for DB 5680 12.1 0.7 2.4 6.7 2.3

DB Configuration

System Manager 259,804 57.7 5.8 10.4 26.0 15.6

Control Data Links 371,561 40.4 3.2 7.3 19.8 10.1

Satellite 176,491 40.4 3.2 7.3 19.8 10.1

Transmit 111,468 40.4 3.2 7.3 19.8 10.1

Receive 65,023 32.6 2.6 5.9 16.0 8.2

Radio 97,535 38.3 3.1 6.9 18.8 9.6

Fiber Link 97,535 38.3 3.1 6.9 18.8 9.6

Brain 222,917 62.2 6.2 11.2 28.0 16.8

Sensors 182,297 49.2 4.9 8.9 22.1 13.3

Solitaire 85,923 36.4 2.6 6.9 18.9 8.0

OS (APIs) 64,210 33.6 2.4 6.4 17.5 7.4

System Total 1,192,392 57.7 6.2 11.2 28 16.8

176

support the maintenance tasks. That is, the environment and development
capability will be relatively constant and productivity will not need to be
adjusted for the maintenance calculations.

The maintenance (enhancements, knowledge retention, and steady state
maintenance) effort calculations are made using the Equations (4-4) through
(4-6) in Section 4.8. The productivity figures in Table G-18 are extracted
from Table G-13 for the maximum software growth condition. These
productivity values are more conservative (lower) than the values that would
be extrapolated from the mean growth productivity and yield a conservative
maintenance effort.

Applying Equation (4-6) to each of the major subsystems yields the
anticipated annual maintenance effort for the system. Note the System
Manager and Brain are dominated by the Annual Change Traffic (ACT)
effort and the remaining subsystems are driven by the number of people
needed to retain system knowledge. The bulk of the personnel will come
from the operational knowledge staff. The two elements singled out in the
maintenance calculation will need to add staff to insure support for the
enhancements and modifications. The annual maintenance effort is
projected to be approximately 968 PM per year of operation. The time at
which the maintenance costs balance the development effort of 11,993 PM is
nearly 11 years. Maintenance effort can match the development effort in as
few as five years, depending on the program quality and change traffic.
Therefore, this maintenance effort is relatively modest.

The annual maintenance effort is projected to be approximately 1,019 PM
per year of operation according to the system-level estimate in Table F-15.
The annual maintenance effort at the nominal component level is 968.3 PM
per year, which is less than the system-level maintenance estimate by 5

Table G-18: Nominal component (CSCI) level cost analysis of the HACS Communication System inc. maintenance

Task Name Ctb Cte Size,
Eff Cplx Develop

(PM)
Total
Effort
(PM)

Prod.
(ESLOC/PM)

Maintenance
Effort

(PM/year)

User Info Database 5680 13 30.7 46.6 202 4.0

Glue code for DB 6474 3150 5680 13 26.7 38.6 202 4.0

DB Configuration 4.0 8.0

System Manager 6474 3150 259,804 11 2455.9 3544.2 99.2 217.3

Control Data Links 371,561 12 2,973.2 4290.6 118.4 276.0

Satellite 6474 3150 176,491 12 1403.6 2025.6 120.7 126.4

Transmit 6474 3150 111,468 12 921.2 1329.4 114.2 85.5

Receive 6474 3150 65,023 12 482.4 696.2 127.2 40.9

Radio 6474 3150 97,535 12 784.8 1132.5 117.3 74.8

Fiber Link 6474 3150 97,535 12 784.8 1132.5 117.3 74.8

Brain 6474 2351 222,917 10 2795.0 4033.6 74.3 205.1

Sensors 6474 3150 182,297 12 1622.2 2398.8 103.5 140.9

Solitaire 6474 3150 85,923 12 674.0 972.7 120.3 65.9

OS (APIs) 6474 3150 64,210 10 441.8 637.6 135.5 59.1

System Total 1,192,392 10,992.8 15,924.1 101.2 968.3

177

percent. As a rough order of magnitude test, the maintenance level matches
the development effort at about 10 years.

178

Figure H-1: Defense Acquisition System

Appendix H
The Defense Acquisition System

The warfighter relies on discipline, courage, training, and superior
equipment to succeed. The purpose of the acquisition process is, ultimately,
to support the warfighter. The Defense Acquisition System exists
to manage the Nation’s investments in technologies, programs,
and product support necessary to achieve the National Security
Strategy and support the United States Armed Forces.80

The acquisition process, referred to as the Defense Acquisition
Management Framework

 The
acquisition system consists of the policies and procedures
governing the operations of the entire Department of Defense
(DoD) acquisition process. As described in Figure H-1, the
system is designed around a series of life-cycle phases. As the
process moves through these phases, decision points determine
the next set of tasks.

81

Cost estimates are one of the fundamental building blocks of the acquisition
process. The cost estimate and supporting budget are a part of the baseline
cost and schedule against which a program's progress and success are
measured. The government must be able to produce and use cost estimates
in order to evaluate whether a system is affordable and consistent with both
the DoD components’ and their overall long-range investment and force
structure plans. Cost estimates also form the basis for budget requests to
Congress.

, is a continuum of activities that
represent or describe acquisition programs. It is intended to
provide faster delivery of capabilities or improvements to the warfighter
through a simple, flexible approach. Acquisition management policies aim
to reduce total ownership costs “cradle-to-grave” by addressing
interoperability, supportability, and affordability.

The intent of this section is to provide an overview of the Defense
Acquisition Management Framework. It will introduce the activities, phases,
and efforts of the acquisition life-cycle. Cost estimate requirements will be
highlighted. The section also briefly identifies the acquisition statutory and
regulatory requirements. Additional policy information and references are
provided at the end of this appendix. Some of the information contained in
this section was obtained from the Defense Acquisition University (DAU)
Acquisition 101 course and is used with permission from DAU.

80 DoD Directive 5000.1. “The Defense Acquisition System.” May 12, 2003.
81 DoD Instruction 5000.2. “The Operation of the Defense Acquisition System.”
May 12, 2003.

The mission of DAU is “to
provide practitioner training,

career management, and services
to enable the DoD Acquisition,

Technology, and Logistics
(AT&L) community to make
smart business decisions, and
deliver timely and affordable

capabilities to the warfighter.”

Make everything as simple as
possible, but not simpler.

Albert Einstein

179

H.1 Basic definitions
Following are some basic definitions that may be helpful in understanding
the various acquisition policies and guiding documents:
• Acquisition – The conceptualization, initiation, design, development,

test, contracting, production, deployment, logistics support,
modification, and disposal of weapons and other systems, supplies,
or services (including construction) to satisfy DoD needs, intended
for use in or in support of military missions.

• Systems – The organization of hardware, software, material,
facilities, personnel, data, and services needed to perform a
designated function with specified results, such as the gathering of
specified data, its processing, and delivery to users.

• Risk – A measure of the inability to achieve program objectives
within defined cost and schedule constraints. Risk is associated
with all aspects of the program, e.g., threat, technology, design
processes, or Work Breakdown Structure elements. It has two
components: the probability of failing to achieve a particular outcome,
and the consequences of failing to achieve that outcome.

H.2 Acquisition authorities
Authority for the DoD to conduct systems acquisition comes from three
principle sources: the law, federal acquisition regulations, and DoD
acquisition policy documents. Statutory authority from Congress provides
the legal basis. A list of the most prominent laws, policy documents, and
other statutory information is contained at the end of this appendix.

The key reference for DoD acquisition is DoD Instruction 5000.2, Operation
of the Defense Acquisition System. This instruction is consistent with
statutory requirements and implements all applicable directives and
guidance. It also authorizes Milestone Decision Authorities (MDAs) to
tailor procedures to achieve cost, schedule, and performance goals. The
MDA is the designated individual with overall responsibility and
accountability for a program and has authority to approve progression
through the acquisition process.

H.3 Acquisition categories
Before discussing the Acquisition Management Framework, the acquisition
program categories will be explained. Acquisition Categories (ACATs), are
established to determine the level of management review, decision authority,
and other requirements for a program. Size, complexity, and risk generally
determine the category of the program. A technology project or acquisition
program is categorized based on its location in the acquisition process, dollar
value, and MDA special interest. There are two separate types of ACATs:
one for weapon systems and Command, Control, Communications,
Computers, and Intelligence (C4I) systems; and one for Automated
Information Systems (AISs). Also, some programs are not categorized as
ACATs and are designated as Abbreviated Acquisition Programs (AAPs).

The user who originates an Initial Capabilities Document determines if the
need could potentially result in the initiation of a new program and makes a
recommendation to the MDA regarding the category. The final ACAT
determination is made by the appropriate MDA at the Milestone B review.

USD (AT&L) – Under
Secretary of Defense
Acquisition, Technology,
and Logistics

ASD (NII) – Assistant
Secretary of Defense
(Networks and Information
Integration)

“To retain respect for sausages and
laws, one must not watch them in the
making.”
 Otto Von Bismarck

180

When cost growth or other factors result in reclassifying a program to a
higher category, the DoD Component shall notify the USD (AT&L) or the
ASD (NII) / DoD Chief Information Officer (CIO).

Designations are assigned per Department of Defense Instruction (DoDI)
5000.2 Enclosure 2 or, for the Navy, Secretary of the Navy (SECNAV)
Instruction 5000.2C (SECNAVINST 5000.2C) Enclosure (2). Programs are
categorized as ACAT I – IV or Abbreviated Acquisition. The review
process depends upon the projected spending level. The intention is that
there should be no more than two levels of review between a Program
Manager and the MDA. See the tables at the end of this appendix for cost
thresholds, decision authorities, and other ACAT details.

H.3.1 ACAT I
An ACAT I program is labeled a Major Defense Acquisition Program
(MDAP). A major system is a combination of elements that function
together providing the required mission capabilities, including hardware,
equipment, software, or any combination thereof. It does not include
construction or other improvements to real property. This designation is
assigned if the total expenditure for Research, Development, Test and
Evaluation (RDT&E) exceeds $365 million in fiscal year (FY) 2000 constant
dollars or procurement is more than $2.19 billion (FY2000 constant dollars).
Note that the MDA may consider a program as one with special interest to
USD (AT&L) and assign it an ACAT I designation regardless of the dollar
value.

A program is generally designated as special interest because of one or more
of the following factors: technology complexity; Congressional interest; a
large commitment of resources; the program is critical to achieving a
capability or set of capabilities; or it is a joint program.

USD (AT&L) designates weapon system and C4I MDAPs as ACAT ID or
ACAT IC. USD (AT&L) is the MDA for ACAT ID programs. The “D”
refers to the Defense Acquisition Board (DAB). The DoD Component (“C”
is for Component) head or designated Component Acquisition Executive
(CAE) is the MDA for ACAT IC programs. The CAE function includes the
Service Acquisition Executives (SADs) for the military departments and
acquisition executives in other DoD components. For example, the Assistant
Secretary of the Navy (Research, Development, and Acquisition) or ASN
(RD&A) is the Department of the Navy (DON) CAE or MDA.

Major Automated Information System (MAIS) programs are designated
ACAT IA by ASD (NII). An ACAT IA is divided into IAM and IAC
categories. As with ACAT IC programs the “C” in IAC refers to
Component. In this case, either the CAE or the Component CIO is the
MDA. ASN (RD&A) is the MDA for DON ACAT IAC programs unless
this authority is specifically delegated. The “M” (in ACAT IAM) refers to
Major Automated Information System (MAIS).

H.3.2 ACAT II
Part of the definition for each of the successive categories is that the
particular ACAT does not meet the criteria for the level above. ACAT II
programs do meet the criteria for a major system and have lower cost
thresholds than ACAT I (RDT&E total expenditure of more than $140

“Inanimate objects are
classified scientifically into
three major categories –
those that don’t work,
those that break down, and
those that get lost.”

 Russell Baker

Secretary of Defense
(SECDEF)

DEPSECDEF

ASD, Networks and
Information
Integration

(NII)

Director,
Operational Test &

Evaluation
(OT&E)

Director, Program
Analysis &
Evaluation

(PA&E)

USD (Policy)

USD Comptroller

USD, Acquisition,
Technology, and

Logistics
(AT&L)

Figure H-2: Acquisition Oversight

181

million in FY 2000 constant dollars, or for procurement , more than $660
million in FY 2000 constant dollars). ACAT II is not applicable to
Automated Information System (AIS) programs. The MDA is the CAE.

H.3.3 ACAT III
ACAT III is the next lower range or cost threshold. This category includes
the less-than MAIS programs. The reasons for the designation are that it
does not meet the criteria for ACAT II or above and it is less-than a MAIS
program. The decision authority is designated by the DoD CAE at the
lowest appropriate level.

H.3.4 ACAT IV
ACAT IV programs are not mentioned in DoDI 5000.2, but are designated in
SECNAVINST 5000.2C. There are two types of ACAT IV programs, IVT
and IVM. “T” or Test programs require Operational Test and Evaluation
(OT&E) while “M” or Monitor programs do not. The Commander
Operational Test and Evaluation Force (COMOPTEVFOR) or Director,
Marine Corps Operational Test and Evaluation Activity (Director,
MCOTEA) may elect to monitor ACAT IVM programs. Program Executive
Officers (PEOs), Systems Command (SYSCOM) Commanders, and Direct
Reporting Program Managers (DRPMs) designate ACAT IV programs and
may delegate MDA authority.

H.3.5 Abbreviated Acquisition Programs
(AAPs)
Small DON acquisitions and modifications may be designated an AAP if
they meet the cost threshold and other criteria and do not require OT&E.
AAPs and IT AAPs are designed to accommodate relatively small, low-risk
and low-cost acquisition and modification programs. Developing policies
and procedures for review and reporting of AAPs is the responsibility of
PEOs, SYSCOM Commanders, and DRPMs. APPs do not meet the criteria
for ACAT IV or above.

H.4 Acquisition management framework
The DoDI 5000.2 process is commonly referred to as the Defense
Acquisition Management Framework. The framework is represented by
Figure H-3.

C
Concept

Refinement
Technology

Development
System Development

& Demonstration
Production &
Deployment

Operations &
Support

A B

Concept
Decision

Design
Readiness
Review

FRP
Decision
Review

LRIP/IOT&E

(Program
Initiation) IOC FOC

Pre-Systems Acquisition Systems Acquisition Sustainment

• Process entry at Milestones A, B, or C
• Entrance criteria met before entering phase
• Evolutionary Acquisition or Single Step to

Full Capability

User Needs &
Technology Opportunities

Figure H-3: Defense Acquisition Management Framework

182

CA B
(Program
Initiation)

User Needs &
Technology Opportunities

H.4.1 Framework elements
The Acquisition Management Framework is separated into three activities:
Pre-Systems Acquisition, Systems Acquisition, and Sustainment. These
activities are divided into five phases: Concept Refinement, Technology
Development, System Development and Demonstration, Production and
Deployment, and Operations and Support. The Phases in System
Acquisition and Sustainment are further divided into six efforts: System
Integration, System Demonstration, Low-Rate Initial Production or limited
deployment (if applicable), Full-Rate Production and Deployment,
Sustainment, and Disposal. An example of a detailed framework is available
at: www.dau.mil/pubs/IDA/IDA_04.aspx

The framework indicates key points in the process known as milestones. A
milestone is the point at which a recommendation is made and approval
sought regarding starting or continuing an acquisition program, i.e.,
proceeding to the next phase. The milestones established by DoDI 5000.2
are: Milestone A approves entry into the Technology Development (TD)
phase; Milestone B approves entry into the System Development and
Demonstration phase; and Milestone C approves entry into the Production
and Deployment (P&D) phase. Also of note are: the Concept Decision (CD)
that approves entry into the Concept Refinement phase; the Design
Readiness Review (DRR) that ends the System Integration (SI) effort and
continues the SDD phase into the System Demonstration (SD) effort; and the
Full Rate Production Decision Review (FRPDR) at the end of the Low Rate
Initial Production (LRIP) effort of the P&D phase that authorizes Full-Rate
Production (FRP) and approves deployment of the system to the field or
fleet. Note that LRIP applies to MDAPs (ACAT I) only.

The framework may be entered at multiple points. The entry points, and
subsequent acquisition path, are determined by the maturity of relevant
technologies and the satisfaction of specific entrance criteria established for
each phase and effort. There is no single best method to accomplish the
goals of the Defense Acquisition System. There is no need for all programs
to follow the entire process. The flexibility and processes allow decision
makers and Program Managers to customize the acquisition strategies to fit
their particular program.

H.4.2 User needs and technology
opportunities
The User Needs and Technology Opportunities effort is divided into two
primary areas as the title implies, User Needs Activities and Technology
Opportunity Activities. User Needs Activities (as shown in Figure H-4)
consist of determining the desired capabilities or requirements of the system.
This activity is governed by the Initial Capabilities Document, which
describes gaps in capability for a particular functional or mission area. It
documents the evaluation of various materiel approaches and proposes a
recommended approach that best satisfies the desired capability. The
capabilities must be centered on an integrated, collaborative, joint
warfighting construct in accordance with the Chairman of the Joint Chiefs of
Staff Instruction (CJCSI) 3170.01C, “Joint Capabilities Integration and
Development System” (JCIDS).

The User Needs Activities also involve preparation of the Capability
Description Document (CDD) and the Capability Production Document

Figure H-4: User Needs Activities

http://www.dau.mil/pubs/IDA/IDA_04.aspx�

183

Concept
Refinement

Technology
Development

A B

Concept
Decision

Pre-Systems Acquisition

Initial Capabilities Document
(ICD)

(CPD). The CDD provides operational performance parameters necessary to
design a proposed system, builds on the Initial Capabilities Document, and
must be approved prior to Milestone B. The Capabilities Production
Document (CPD) refines performance parameters from the CDD to support
production. It must be approved prior to Milestone C by the Joint
Requirements Oversight Council (JROC) or Sponsor/Domain Owner
depending upon whether the program is of joint interest or not.

The other elements of the User Needs and Technology Opportunities effort
are the Technology Development activities. They are conducted to ensure
the transition of innovative concepts and superior technology to the user and
acquisition customer. This is accomplished using Advanced Technology
Demonstrations, Advanced Concept Technology Demonstrations, or Joint
Warfighting Experiments.

H.4.3 Pre-systems acquisition
Pre-Systems Acquisition activities involve development of user needs,
science and technology efforts, and concept refinement work specific to the
development of a materiel solution to an identified, validated need. As
shown in Figure H-5, the activities are governed by the Initial Capabilities
Document and supported by the Concept Refinement and Technology
Development phases. The acquisition strategy is developed during this
activity.

“Evolutionary acquisition is the preferred DoD strategy for rapid acquisition
of mature technology for the user.”82

 The acquisition strategy guides
program execution from initiation through post-production support. It
provides a summary description of the capability need that the acquisition of
technology, products, and services are intended to satisfy. The strategy
prescribes accomplishments for each acquisition phase and identifies the
critical events that govern program management.

In an evolutionary approach, the user capability is divided into two or more
increments, each with increased capabilities. There are two basic
approaches: spiral development, and incremental development. In a spiral
development, the desired capabilities are identified but the end state is
unknown at program initiation. The requirements are refined through
demonstration and risk management. Future increments derive
requirements from user feedback and maturing technology. Incremental
development has a known end state and requirements. The requirements are
met over time through multiple increments dependent upon available
technology.

H.4.3.1 Concept refinement phase
The acquisition process begins with refinement of the selected concept to
meet a stated capability need. The intent of Concept Refinement is to put
innovation into practice and foster collaboration between the warfighter,
developers, testers, sustainers, and cost estimators to arrive at the best
approach to solve the user’s needs. This collaboration relies on Integrated
Process Teams (IPTs), with representatives from the functional disciplines,
to identify and resolve issues and to make recommendations.

82 DoD Instruction 5000.2. “Operation of the Defense Acquisition System.”
May 12, 2003.

The sponsor is the DoD
component, domain owner or
other organization responsible for
all common documentation,
periodic reporting, and funding
actions required to support the
capabilities development and
acquisition process for a specific
capability proposal.

Figure H-5: Pre-Systems Acquisition

184

C
System Development

& Demonstration
Production &
Deployment

B

Design
Readiness
Review

FRP
Decision
Review

LRIP/IOT&E

(Program
Initiation) IOC

Systems Acquisition

Capability Development
Document (CDD)

Capability Production
Document (CPD)

Concept Refinement begins with the Concept Decision. The decision to
begin this phase does not mean that a new acquisition program has been
initiated. Entrance into the Concept Refinement phase depends upon an
approved Initial Capabilities Document and an approved plan for conducting
an Analysis of Alternatives (AoA) for the selected concept. The AoA
provides the basis for a Technology Development Strategy (TDS), which is
submitted prior to Milestone A for potential ACAT I and IA programs.

Through studies, lab experiments, modeling, market research, and similar
activities, the proposed solutions are examined. Key elements to be assessed
include technology maturity and technical risk. The phase ends when the
MDA approves the preferred solution resulting from the AoA and approves
the associated TDS. The MDA establishes a date for Milestone A and
documents all decisions in an Acquisition Decision Memorandum (ADM).

H.4.3.2 Milestone A
The Milestone A decision determines the program course. At this milestone,
the MDA approves the TDS and sets criteria for the TD phase. If there is no
predetermined concept and evaluation of multiple concepts is needed, the
MDA will approve a Concept Exploration effort. If there is an acceptable
concept without defined system architecture, the MDA will approve a
Component Advanced Development effort. Milestone A approval does not
initiate a new acquisition program.

H.4.3.3 Technology development phase
The purpose of this phase is to reduce technology risk and to determine the
appropriate set of technologies to be integrated into the complete system. It
is a continuous iterative process, requiring collaboration to determine the
viability of current technical knowledge and tools while simultaneously
refining user requirements. Note that shipbuilding programs may be
initiated at the beginning of Technology Development in order to start ship
design concurrent with sub-system / component technology development.

The Initial Capabilities Document and TDS guide the efforts during this
phase. Demonstrations of the proposed technology by the developer may be
necessary to show the user that the solution is affordable, militarily useful,
and based upon mature technology. In an evolutionary acquisition,
technology identification and development continues for future increments in
parallel with acquisition of the current or preceding increments. This allows
for a faster progression into the System Development and Demonstration
(SDD) phase.

During the Technology Development phase, the Capability Development
Document (CDD) is created. The CDD builds upon the Initial Capabilities
Document and provides the necessary details to design the proposed system.
The project exits the phase when an affordable increment of useful capability
to the military has been identified, demonstrated in the relevant environment,
and can be developed within a short timeframe (usually less than five years).
The Milestone B decision follows the completion of Technology
Development.

Figure H-6: Systems Acquisition

185

System Development
& Demonstration

Design
Readiness
Review

System
Integration

System
Demonstration

C

H.4.3.4 Milestone B
The purpose of Milestone B is to authorize entry into the System
Development and Demonstration phase. Milestone B approval can lead to
either System Integration or System Demonstration depending upon the
maturity of the technology. Programs that enter the acquisition process at
Milestone B must have an Initial Capabilities Document that provides the
context for determination and approval of the needed capability and a CDD
that describes specific program requirements.

At Milestone B, the MDA considers the following requirements: Validated
CDD, System Treat Assessment, Program Protection Plan, Technology
Readiness Assessment, Affordability Assessment, and Test and Evaluation
Master Plan (TEMP). Also, the MDA approves: the Acquisition Program
Baseline (APB), LRIP quantities (where applicable), System Development
and Demonstration exit criteria, the DRR exit criteria, (if needed), and the
acquisition strategy. The Acquisition Strategy requires collaboration
between the Program Manager, MDA, and the functional communities
engaged in and supporting DoD acquisition. It is used to guide activities
during the SDD phase.

If technology maturity was demonstrated but there was no integration of the
subsystems into a complete system, then the program enters the system
integration effort. If the system was demonstrated by prototype articles or
Engineering Development Models (EDMs), then the program enters the
System Demonstration phase.

Milestone B is the point at which an acquisition program is initiated. Before
initiating a new acquisition program, DoD Components must affirmatively
answer the following questions:
 Does the acquisition support core/priority mission functions that need to

be performed?
 Does the acquisition need to be undertaken by the DoD component

because no alternative private sector or governmental source can better
support the function?

 Does the acquisition support work processes that have been simplified
or otherwise redesigned to reduce costs, improve effectiveness, and
make maximum use of COTS technology?

H.4.4 Systems acquisition
The Systems Acquisition activity requires a great deal of planning and
preparation and comprehensive knowledge of the program and the defense
acquisition environment. The activity is divided into two phases: the System
Development and Demonstration and Production and Deployment.

H.4.4.1 System development and demonstration
The objective of the System Development and Demonstration phase is to
demonstrate an affordable, supportable, interoperable, and producible system
in its intended environment. This is accomplished using EDMs or
commercial items that meet validated requirements and ensure that necessary
industrial capabilities to produce the systems are available. The phase can
be entered directly from the TD phase as determined by the MDA. Entrance
depends upon technology maturity, approved requirements, and funding.
Completion of this phase is dependent upon a decision by the MDA to
commit to the program at Milestone C or to end the effort.

The Office of the Secretary of Defense
(OSD), the Military Departments, the
Chairman of the Joint Chiefs of Staff, the
Combatant Commands, the Office of the
Inspector General of the Department of
Defense, the Defense Agencies, the DoD
Field Activities, and all organizational
entities within the Department of Defense
are collectively referred to as "the DoD
Components".

 Lead ship in a class normally

authorized at Milestone B

186

Transition into SDD requires full funding. The SDD has two major efforts:
System Integration and System Demonstration. System Integration requires
a technical solution for the system. At this point, the subsystems are
integrated, the detailed design is completed, and efforts are made to reduce
system-level risks. The effort is guided by an approved CDD which includes
a minimum set of Key Performance Parameters (KPPs). The program exits
System Integration when the system has been demonstrated using prototype
articles or EDMs and upon completion of a Design Readiness Review.

The Design Readiness Review form and content is determined by the MDA
and provides an opportunity to assess: the design maturity, corrective
actions for deficiencies, scope of testing, safety and other risks, key system
characteristics, reliability, and manufacturing processes. A successful
review ends the System Integration effort and moves the program into the
System Demonstration effort.

System Demonstration is intended to show that the system works. The
ability of the system (prototype) to operate must be shown in its intended
environment. It must demonstrate that it provides the required capabilities
and that it meets or exceeds the exit criteria established in the TDS.

The completion of the SDD phase is dependent on a decision by the MDA to
either commit to the program at Milestone C or to end this effort.

H.4.4.2 Milestone C
The purpose of Milestone C is to authorize entry into: LRIP, production or
procurement (for systems that do not require LRIP), authorizes operational
testing, or limited deployment for MAIS or software-intensive systems with
no production components. A partial list of Milestone C criteria includes:
acceptable performance, mature software, satisfactory results from testing
and the operational assessment, and no significant manufacturing risks.
Other conditions include affordability, interoperability, and supportability.
See DoDI 5000.2 for details.

Prior to the Milestone C decision, the MDA considers: cost and manpower
estimates (for MDAPs), the system threat assessment, and environmental
issues. A favorable Milestone C decision commits DoD to production of the
system. At Milestone C, the MDA approves: the updated acquisition
strategy, updated development APB, exit criteria for LRIP or limited
deployment, and the ADM.

For MDAPs and major systems, Milestone C authorizes entry into LRIP; a
subsequent review and decision authorizes full rate production. LRIP is not
applicable for MAIS programs or software-intensive systems without
developmental hardware. However, a limited deployment phase may be
applicable to these systems.

H.4.4.3 Production and deployment
The purpose of the P&D phase is to achieve an operational capability that
satisfies mission needs. The production requirement does not apply to MAIS
programs, but software maturity must be proven prior to operational
deployment. The P&D phase consists of the LRIP effort, the FRPDR, and
the Full-Rate Production and Deployment effort.

• MDAP – Major Defense
Acquisition Program

• APB – Acquisition
Program Baseline

• ADM – Acquisition
Decision Memorandum

187

Operations &
Support

FOC

Sustainment Disposal

C
Production &
Deployment

FRP
Decision
Review

LRIP/IOT&E

IOC

Capability Production
Document (CPD)

The LRIP effort is intended to complete development of a manufacturing
capability able to efficiently produce the necessary number of systems for
Initial Operational Test and Evaluation (IOT&E). The production base must
also allow for an effective increase in the production rate when operational
testing is completed. The test director shall determine the number of
production systems (articles) required for test and evaluation.

The CPD guides the LRIP effort. As indicated in the Milestone B
requirements, the LRIP quantities are determined by the MDA. Any
increase must likewise be approved during this effort. Deficiencies found
during test (prior to Milestone C) must be resolved and verified before
proceeding beyond LRIP. LRIP for ships and satellites is production of
items at the minimum quantity and rate that is feasible and that preserves the
mobilization production base for the system.

The decision to continue to full-rate production, or limited deployment for
MAIS/software-intensive systems, requires completion of IOT&E and
approval of the MDA. Other reports may be necessary per DoDI 5000.2.
Before the FRPDR, the MDA considers: the manufacturing process,
reliability, critical processes, and other data. An Independent Cost Estimate
(ICE) for MDAPs, or a Component Cost Analysis for MAISs, is required at
the FRP Decision Review.

Full-Rate Production and Deployment begins after a successful FRPDR by
the MDA. This effort delivers the fully funded quantity of systems,
supporting materiel, and services for the program or increment to the users.
The system achieves Initial Operational Capability (IOC) during this effort.

H.4.5 Sustainment
The Sustainment activity has one phase, Operations and Support (O&S),
consisting of two major efforts: Sustainment and Disposal. The objective of
this activity is to provide cost-effective support for the operational system
over its total life-cycle. Operations and Support begins when the first
systems are deployed. Since deployment begins in the latter portions of the
P&D phase, these two activities overlap. Later, when a system has reached
the end of its useful life, it needs to be disposed of appropriately.

H.4.5.1 Sustainment effort
Thought towards maintenance and sustainability begins at system design.
Wise planning during systems engineering, building for reliability and ease
of maintenance all lead to effective sustainment. Sustainment includes many
functions such as: supply, transportation, configuration management,
training, personnel, safety, and security.

Support and life-cycle affordability plans in the acquisition strategy are
implemented by the Program Managers. They address: the support and
fielding requirements to meet readiness and performance objectives, lower
total ownership costs, risk reduction, and avoidance of harm to health and
environment. Sustainment strategies need to evolve throughout the life-
cycle to take advantage of cost saving methods and improved technology.
This is especially important for later increments or upgrades and
modifications to the system. Decision makers must look at total ownership
costs within the context of overall DoD priorities.

The cost of maintaining systems
in many organizations has been
observed to range from 40% to
70% of resources allocated to the
entire software life-cycle.

Penny Grubb and Armstrong
Takang, from Software
Maintenance: Concepts and
Practice

Figure H-7: Production &Deployment

Figure H-8: Operations & Support

188

H.4.5.2 Disposal effort
At the end of the system’s useful life, it must be demilitarized and disposed
of in accordance with all the requirements and policies relating to safety,
security, and the environment. These plans are also addressed by the
Program Managers in the acquisition strategy. Sustainment continues until
all elements of the system are removed from the inventory.

H.5 Cost analysis
The Defense Acquisition System documents refer to life-cycle cost, total
ownership cost, and various cost estimates and analyses. For a defense
acquisition program, life-cycle cost consists of research and development,
investment (i.e., LRIP and P&D phases), O&S, and disposal costs over the
entire life of the system. The life-cycle cost includes the direct acquisition
costs and any indirect costs that can be logically attributed to the program.
Total ownership cost includes the elements of life-cycle cost along with the
infrastructure or business process costs not necessarily attributable to the
program.

Cost estimates and analyses are directed by law and governed by DoD and
service directives and instructions. Title 10 of the United States Code,
Subtitle A, Part IV, Chapter 144, Section 2434, states:

The Secretary of Defense may not approve the system development
and demonstration, or the production and deployment, of a major
defense acquisition program unless an independent estimate of the
full life-cycle cost of the program and a manpower estimate for the
program have been considered by the Secretary.

In DoD Directive 5000.4, Cost Analysis Improvement
Group (CAIG), the specific responsibility for fulfilling
the requirement for an independent cost estimate is
assigned to the Office of the Secretary of Defense
(OSD) Cost Analysis Improvement Group for ACAT
ID programs, pre-MDAP projects approaching formal
program initiation as a likely ACAT ID program, and
ACAT IC programs when requested by the USD
(AT&L).

DoDI 5000.2 specifies that the CAIG independent cost
estimate will be provided in support of major
milestone decision points (Milestone B, C, or the
FRPDR). In addition, the MDA may request, at any
time, that the CAIG prepare other ICEs or conduct
other ad-hoc cost assessments for programs subject to
DAB review or oversight. The OSD CAIG reviews
cost estimates prepared by the program office and/or
the DoD Component cost agency. Overall, the CAIG serves as the principal
advisory body to the MDA on all matters concerning an acquisition
program’s life-cycle cost.

DoDI 5000.2 Enclosure 3 lists cost information required for the milestones
and reviews. For example, an ICE is required for MDAPs (n/a for AISs) at
Milestone B, Milestone C, and the FRPDR. The instruction also requires
that a program office estimate (POE) and a DoD Component cost analysis

Figure H-9: Life Cycle Cost Composition

189

estimate be prepared in support of acquisition milestone reviews. Of note,
only a cost assessment is required at program initiation for ships. The table
in the enclosure also points out the Affordability Assessment, Economic
Analysis, Component Cost Analysis, and what type of programs they are
required for and at what points in the program.

As stated, the OSD CAIG prepares independent life-cycle cost estimates for
major defense acquisition programs at major milestone reviews. It also
concurrently reviews cost estimates prepared by the program office and/or
the DoD Component cost agency. The CAIG has other responsibilities, as
described in DoDD 5000.4. One of the major responsibilities is to establish
guidance on the preparation of life-cycle cost estimates subject to CAIG
review. This guidance includes standard definitions of cost terms in the
management of DoD acquisition programs.

H.5.1 Cost estimating
Cost estimating and analysis are clearly essential activities in determining
life-cycle and total ownership costs. The estimates must include all costs
associated with the system or the total “Life Cycle Cost Composition”
(Figure H-9). It is, therefore, important to submit well-documented cost
estimates that are ready for review. In general, the documentation should be
sufficiently complete and well organized so that a cost professional can
replicate the estimate, given the documentation.

Cost estimates are based on the program definition. For ACAT I and IA
programs, the Cost Analysis Requirements Description (CARD) is used to
formally describe the acquisition program (and the system itself) for
purposes of preparing the program office cost estimate, Component cost
position (if applicable), the ICE, and whenever an Economic Analysis is
required. The Cost Analysis Guidance and Procedures (DoD 5000.4-M)
says the CARD should be considered a “living” document that is updated to
reflect changes.

As an aside, requirements uncertainty, completeness, and estimating
techniques are discussed elsewhere in this guidebook. Suffice it to say,
“Stable requirements are the holy grail of software development.”83

 The
level of detail presented in the CARD will vary depending upon the maturity
of the program and will affect the fidelity of the cost estimate. During the
development process, customers and developers gain a better understanding
of the system and their needs, which leads to requirements change.
Consequently, techniques used to develop the cost estimates need to take
into account the stage of the acquisition cycle that the program is in when the
estimate is made. During the early phases of the program, it is expected that
the use of parametric (statistical) costing techniques will be used for the
development of the cost estimates.

Cost estimates must capture all costs of the program, regardless of fund
source or management control; they are not to be arbitrarily limited to certain
budget accounts or to categories controlled by certain lines of authority.

When programs are less mature (in Concept Refinement, Technology
Development, or System Development & Demonstration), program cost

83 McConnell, Steve. Code Complete, Second Edition. Redmond, WA: Microsoft
Press, 2004.

Requirements are like water.
They’re easier to build on
when they’re frozen.

 Anonymous

Arthur C. Clarke’s 3 Laws:

1. When a distinguished but elderly
scientist states that something is
possible, he is certainly right. When
he states that something is impossible,
he is very probably wrong.
2. The only way of discovering the
limits of the possible is to venture a
little way past them into the
impossible.
3. Any sufficiently advanced
technology is indistinguishable from
magic.

Revised Edition of
Profiles of the Future (1973)

190

estimates that are supporting the acquisition system normally are focused on
life-cycle cost or elements of life-cycle cost. Examples include:
affordability assessments, analyses of alternatives, cost-performance
tradeoffs, and program cost goals. More refined life-cycle cost estimates are
often used within the program office to support internal decision-making
such as design change evaluations and assessments of production, reliability,
maintenance, and support. As programs mature (transition from Production
and Deployment to Operations and Support), cost estimates will likely be
expanded in scope to encompass total ownership costs.

For cost elements which are determined to be low-risk and low-cost based on
an independent analysis of the program assumptions, the CAIG Chair may
authorize the use of the Sufficiency Review method for assessing the
adequacy of these cost elements. The review includes an evaluation of the
techniques and data used to develop the POE and, if available, the use of
data from alternative sources to verify the POE. The results of the review are
documented and provided to the CAIG.

H.5.2 Estimate types
DoD, service component, and other acquisition guidance provides more
detailed information on the requirements for the various estimates that are
part of the Defense Acquisition System process. For the purposes of this
guidebook, a brief summary of the types mentioned in DoDI 5000.2, DoD
Directive 5000.4, and DoD 5000.4-M are included here. However, these
estimate type definitions are common to most other documentation.

H.5.2.1 Life-cycle cost estimate
DoDD 5000.1 directs estimation of ownership costs to begin as early as
possible in the acquisition process. The Life-Cycle Cost Estimate (LCCE)
must be provided to the MDA before approval for an MDAP to proceed with
the Systems Acquisition activity. Life-Cycle Cost includes all program
elements; all affected appropriations; and encompasses the costs, contractor
and in house effort, as well as existing assets to be used, for all cost
categories. It is the total cost to the government for a program over its full
life, and includes the cost of research and development, investment in
mission and support equipment (hardware and software), initial inventories,
training, data, facilities, etc., and the operating, support, and, where
applicable, demilitarization, detoxification, or long term waste storage. The
Independent Cost Estimate and the Program Office Estimate described
below are both, essentially, LCCEs. The difference between them is the
organization who prepares it.

H.5.2.2 Total Ownership Cost
As explained earlier, TOC consists of the life-cycle cost, as well as other
infrastructure or costs not necessarily attributable to the program.
Infrastructure is interpreted in the broadest sense to include all military and
defense agency activities which sustain the military forces assigned to the
combatant and component commanders. The major categories of
infrastructure are: equipment support (acquisition and central logistics
activities), military personnel support (non-unit central training, personnel
administration and benefits, and medical care), and military base support
(installations and communications/information infrastructure). Other costs
include many things such as environmental and safety compliance and
contract oversight.

191

The CDD and CPD include a program affordability determination identified
as life-cycle cost or, if available, total ownership cost. The APB should
contain cost parameters (objectives and thresholds) for major elements of
program life-cycle costs (or TOCs, if available).

In general, traditional life-cycle cost estimates are in most cases adequate in
scope to support decisions involving system design characteristics (such as
system weight, material mix, or reliability and maintainability). However, in
special cases, depending on the issue at hand, the broader perspective of total
ownership cost may be more appropriate than the life-cycle cost perspective,
which may be too narrow to deal with the particular context.

H.5.2.3 Analysis of Alternatives
The AoA is the evaluation of the operational effectiveness, operational
suitability, and estimated cost of alternative systems to meet a mission
capability. The AoA is developed during the Concept Refinement phase and
is required for Milestone A. For potential and designated ACAT I and IA
programs, the Director, Program Analysis and Evaluation will direct
development of the AoA by preparing initial guidance and reviewing the
analysis plan and final analysis products.

H.5.2.4 Independent Cost Estimate
An ICE is required for major milestone decision points. Estimates,
independent of the developer and the user, ensure an impartial cost
evaluation. Acquisition officials typically consider these assessments when
making decisions.

An ICE is prepared and provided to the MDA before an MDAP proceeds
with System Acquisition activities. The OSD CAIG usually prepares the
ICE. However, the component cost agency, for example the Naval Center
for Cost Analysis (NCCA), is responsible for the ICE when it is not prepared
by the CAIG.84

H.5.2.5 Program Office Estimate (POE)

 Similarly, in the case of ACAT II programs, an ICE is
prepared by the SYSCOM/PEO Cost Estimating Office.

The program office prepares many estimates, as can be derived from the
previous information, such as the AoA and affordability assessment. They
prepare an LCCE for all ACAT I program initiation decisions and at all
subsequent program decision points. This is known as the Program Office
Estimate (POE). The CAIG may incorporate in its estimate, with or without
adjustment, specific portions of the POE or the DoD Component Cost
Analysis estimate, if it has independently established that the portions
included are valid.

H.5.2.6 Component Cost Analysis
Another type of independent estimate is called the Component Cost
Analysis. It is mandatory for MAIS programs and as requested by the CAE
for MDAP programs. The need for a Component Cost Analysis at Milestone
A is evaluated for each program in tailoring the oversight process. The
Component Cost Analysis is normally prepared by the Service Component

84 SECNAVINST 5000.2C. Implementation and Operation of the Defense
Acquisition System and the Joint Capabilities Integration and Development System.
Nov. 19, 2004.

Gregory Benford’s Corollary to
Clarke’s Third Law: Any
technology distinguishable from
magic is insufficiently advanced.

192

Cost Estimating Agency or an entity not associated with the program office
or its immediate chain of command. Note that recent references (DoD
Instruction [DoDI] 5000.2 and the Defense Acquisition Guidebook) define
CCA as the Clinger-Cohen Act and spell out Component Cost Analysis.

H.5.2.7 Economic Analysis
The purpose of the Economic Analysis is to determine the best acquisition
alternative. This is done by assessing the net costs and benefits of the
proposed program relative to the status quo. An Economic Analysis is only
required for MAIS programs. Anytime one is required, the DoD Component
responsible for the program may also be required to provide a DoD
Component Cost Analysis. Normally, the Economic Analysis is prepared by
the AIS program office. The CARD is used to define and describe the AIS
program for purposes of preparing both the Economic Analysis and the DoD
Component Cost Analysis.

H.6 Acquisition category information
The following tables were copied from the NAVAIR Training Systems
Division website. The website table data was last updated 10 January 2005.

Table H-1: DoD Instruction 5000.2 ACATs

Description and Decision Authority for ACAT I - III Programs

Acquisition
Category Reason for ACAT Designation Decision Authority

ACAT I

 MDAP (10 USC 2430, reference (n))
• Dollar value: estimated by the USD(AT&L) to require an

eventual total expenditure for RDT&E of more than $365 million
in fiscal year (FY) 2000 constant dollars or, for procurement, of
more than $2.190 billion in FY 2000 constant dollars

• MDA designation
 MDA designation as special interest

ACAT ID: USD(AT&L) ACAT IC:
Head of the DoD Component or, if
delegated, the DoD Component
Acquisition Executive (CAE)

ACAT IA

 MAIS: Dollar value of AIS estimated by the DoD Component Head to
require program costs (all appropriations) in any single year in excess
of $32 million in fiscal year (FY) 2000 constant dollars, total program
costs in excess of $126 million in FY 2000 constant dollars, or total
life-cycle costs in excess of $378 million in FY 2000 constant dollars

 MDA designation as special interest

ACAT IAM: ASD(C3I)/DoD CIO
ACAT IAC: CAE, as delegated by
the DoD CIO

ACAT II

 Does not meet criteria for ACAT I
 Major system

• Dollar value: estimated by the DoD Component Head to require
an eventual total expenditure for RDT&E of more than $140
million in FY 2000 constant dollars, or for procurement of more
than $660 million in FY 2000 constant dollars (10 USC 2302d,
reference (o))

• MDA designation4 (10 USC 2302(5), reference (p))
 MDA designation as special interest

DoD CAE or the individual
designated by the CAE

ACAT III Does not meet criteria for ACAT II or above
 Less-than a MAIS program

Designated by the DoD CAE at the
lowest level appropriate

Notes:
1. In some cases, an ACAT IA program, as defined above, also meets the definition of an MDAP. The USD(AT&L) and the
ASD(C3I)/DoD CIO shall decide who will be the MDA for such programs. Regardless of who is the MDA, the statutory
requirements that apply to MDAPs shall apply to such programs.
2. An AIS program is an acquisition program that acquires IT, except IT that involves equipment that is an integral part of a weapon
or weapons system, or is an acquisition of services program.
3. The ASD(C3I)/DoD CIO shall designate programs as ACAT IAM or ACAT IAC. MAIS programs shall not be designated as
ACAT II.
4. As delegated by the Secretary of Defense or Secretary of the Military Department.

193

Table H-2: SECNAV Inst 5000.2C ACATs

Description and Decision Authority for ACAT I-IV and AAP Programs

Acquisition
Category Criteria for ACAT or AAP Designation Decision Authority

ACAT I

 Major Defense Acquisition Programs (MDAPs) (10 USC 2430)
• RDT&E total expenditure > $365 million in FY 2000

constant dollars, or
• Procurement total expenditure > $2.190 billion in FY 2000

constant dollars, or
 USD(AT&L) designation as special interest

ACAT ID: USD(AT&L)ACAT IC:
SECNAV, or if delegated,
ASN(RD&A) as the CAE

ACAT IA

 Major Automated Information Systems (MAISs)
• Program costs/year (all appropriations) > $32 million in FY

2000 constant dollars, or
• Total program costs > $126 million in FY 2000 const.

dollars, or
• Total life-cycle costs > $378 million in FY 2000 constant

dollars
 ASD(NII) designation as special interest

ACAT IAM: ASD(NII)/DoD
CIOACAT IAC: ASN(RD&A), as
delegated by the DoD CIO

ACAT II

 Does not meet the criteria for ACAT I
 Major Systems (10 USC 2302(5))

• RDT&E total expenditure > $140 million in FY 2000
constant dollars, or

• Procurement total expenditure > $660 million in FY 2000
constant dollars, or

 ASN(RD&A) designation as special interest
 Not applicable to IT system programs

ASN(RD&A), or the individual
designated by ASN(RD&A)

ACAT III

 Does not meet the criteria for ACAT II or above
 Weapon system programs:

• RDT&E total expenditure = $140 million in FY 2000
constant dollars, or

• Procurement total expenditure = $660 million in FY 2000
constant dollars, and

• Affects mission characteristics of ships or aircraft or
combat capability

 IT system programs:
• Program costs/year = $15 million = $32 million in FY 2000

constant dollars, or
• Total program costs = $30 million = $126 million in FY

2000 constant dollars, or
• Total life-cycle costs = $378 million in FY 2000 constant

dollars

Cognizant PEO, SYSCOM
Commander, DRPM, or designated
flag officer or senior executive
service (SES) official.

ASN(RD&A), or designee, for
programs not assigned to a PEO,
SYSCOM, or DRPM.

ACAT IVT

 Does not meet the criteria for ACAT III or above
 Requires operational test and evaluation
 Weapon system programs:

• RDT&E total expenditure = $140 million in FY 2000
constant dollars, or

• Procurement total expenditure = $660 million in FY 2000
constant dollars

 IT system programs:
• Program costs/year < $15 million, or
• Total program costs < $30 million, or
• Total life-cycle costs = $378 million in FY 2000 constant

dollars

Cognizant PEO, SYSCOM
Commander, DRPM, or designated
flag officer, SES official, or
Program Manager.

ASN(RD&A), or designee, for
programs not assigned to a PEO,
SYSCOM, or DRPM

ACAT IVM

 Does not meet the criteria for ACAT III or above
 Does not require operational test and evaluation as concurred

with by the Office of Technology Assessment (OTA)
 Weapon system programs:

• RDT&E total expenditure = $10 million = $140 million in
FY 2000 constant dollars, or

• Procurement expenditure = $25 million/year = $50 million
total = $660 million total in FY 2000 constant dollars

 Not applicable to IT system programs

Cognizant PEO, SYSCOM
Commander, DRPM, or designated
flag officer, SES official, or
Program Manager.

ASN(RD&A), or designee, for
programs not assigned to a PEO,
SYSCOM, or DRPM

Abbreviated Does not meet the criteria for ACAT IV or above Cognizant PEO, SYSCOM

194

Description and Decision Authority for ACAT I-IV and AAP Programs

Acquisition
Category Criteria for ACAT or AAP Designation Decision Authority

Acquisition
Program

 Does not require operational test and evaluation as concurred
with in writing by OTA

 Weapon system programs:
• Development total expenditure < $10 million, and
• Production or services expenditure < $25 million/year, <

$50 million total
 IT system programs:

• Program costs/year < $15 million, and
• Total program costs < $30 million

Commander, DRPM, or designated
flag officer, SES official, or
Program Manager.

ASN(RD&A), or designee, for
programs not assigned to a PEO,
SYSCOM, or DRPM.

H.7 Acquisition references
The following information provides additional details and resources on
acquisition related topics.

H7.1 Online resources
Defense Acquisition Guidebook (DAG): The Defense Acquisition
Guidebook is designed to complement the policy documents by providing
the acquisition workforce with discretionary best practices that should be
tailored to the needs of each program.
Acquisition professionals should use the Guidebook as a reference source
supporting their management responsibilities. Link:
http://akss.dau.mil/dag/DoD5000.asp?view=document&doc=3

Introduction to Defense Acquisition Management (ACQ 101): This
course provides a broad overview of the DoD systems acquisition process,
covering all phases of acquisition. It introduces the JCIDS and resource
allocation processes, the DoD 5000 Series documents governing the defense
acquisition process, and current issues in systems acquisition management.
Link (to this and other DAU course descriptions):
http://www.dau.mil/schedules/schedule.asp

Defense Acquisition Policy Center: References and links to Acquisition
Policies (DoD, Joint Chiefs, and Services), Guidance, and Support
(Tutorials, briefings, etc.). Link: http://akss.dau.mil/dapc/index.html

Acquisition Community Connection (ACC): Other resources for
acquisition information, knowledge and information sharing forums to
connect with others in your field, collaborative and private workspaces.
Link: https://acc.dau.mil/simplify/ev_en.php

Acquisition, Technology, and Logistics Knowledge Sharing System
(AKSS): Contains links to policies and tools and other suggested reading
resources. Includes links to new policy documents and the latest news for
DoD and the services. Link: http://akss.dau.mil/jsp/default.jsp

H7.2 Statutory information
Statutory authority from Congress provides the legal basis for systems
acquisition. Some of the most prominent laws are:

• Armed Services Procurement Act (1947), as amended

http://akss.dau.mil/dag/DoD5000.asp?view=document&doc=3�
http://www.dau.mil/schedules/schedule.asp�
http://akss.dau.mil/dapc/index.html�
https://acc.dau.mil/simplify/ev_en.php�
http://akss.dau.mil/jsp/default.jsp�

195

• Small Business Act (1963), as amended
• Office of Federal Procurement Policy Act (1983), as amended
• Competition in Contracting Act (1984)
• DoD Procurement Reform Act (1985)
• DoD Reorganization Act of 1986 (Goldwater-Nichols)
• Federal Acquisition Streamlining Act (FASA) of 1994
• Clinger-Cohen Act of 1996

Armed Services Procurement Act - The modern era of congressional
involvement in acquisition began with the Armed Services Procurement Act
of 1947. The purpose of this law was to standardize contracting methods
used by all of the services. As a result, the first joint DoD regulation was
created—the Armed Services Procurement Regulation (ASPR). This Act
continued the sealed bid as the preferred method of procurement, placed
procurement rules in one location and gave us the ASPR, which was the
beginnings of today's rulebook, the Federal Acquisition Regulation (FAR).

Office of Federal Procurement Policy Act of 1983 - Established a central
office to define overall government contracting and acquisition policy and to
oversee the system, among other things.

Competition in Contracting Act of 1984 - Revised government policy to
mandate competition and created an advocate for competition, the
Competition Advocate General. While competition has always been the
hallmark of the system, it was not until the passage of the Competition in
Contracting Act (CICA) of 1984, which mandated full and open competition,
that over 50 percent of the dollars spent were actually competed. CICA
instituted a very structured process for sole source authorization. It requires
approval by the local competition advocate for lower dollar acquisitions.

DoD Procurement Reform Act 1985 - Defense Procurement Reform Act
established a uniform policy for technical data and created a method for
resolving disputes.

DoD Reorganization act of 1986 (commonly referred to as Goldwater-
Nichols Act) - Among other items, revised the Joint Chiefs of Staff role in
acquisition and requirements determination.

Federal Acquisition Streamlining Act - Revolutionary in its impact on the
federal acquisition process. It repealed or substantially modified more than
225 statutes and pushed the contracting process into the 21st century. Among
other things, it simplified the federal procurement process, reduced
paperwork burdens, and transformed the simplified acquisition process to
electronic commerce. Military specifications and standards are no longer the
preferred method of doing business. Congress, at the DoD’s urging, passed
this legislation to remove some of the barriers.

Cohen-Clinger Act of 1996 - It provides that the government information
technology shop be operated exactly as an efficient and profitable business
would be operated. Acquisition, planning and management of technology
must be treated as a "capital investment." While the law is complex, all
consumers of hardware and software in the DoD should be aware of the
CIO’s leadership in implementing this statute. CCA emphasizes an
integrated framework of technology aimed at efficiently performing the
business of the DoD. Just as few businesses can turn a profit by allowing

196

their employees to purchase anything they want to do any project they want,
the DoD also cannot operate efficiently with hardware and software systems
purchased on an “impulse purchase” basis and installed without an overall
plan. All facets of capital planning are taken into consideration just as they
would be in private industry:

• cost/benefit ratio
• expected life of the technology
• flexibility and possibilities for multiple uses

The act included changes to competition practices, commercial item
acquisition, and fundamental changes in how information technology
equipment is purchased. Note: before FASA could be fully implemented,
this Act became law and corrected some deficiencies in the earlier legislation
and made more changes.

Defense Procurement Improvement Act of 1986 - Provided policy on the
costs contractors submitted to the government for payment and on conflicts
of interest involving former DoD officials.

Defense Acquisition Improvement Act of 1986 - Among other things,
created the Under Secretary of Defense (Acquisition and Technology).

Ethics Reform Act of 1989 - As a result of the “ill-wind” procurement
scandal, Congress mandated more stringent ethics laws.

Defense Acquisition Workforce Improvement Act of 1990 - Mandated
education, training and professional requirements for the defense acquisition
corp.

Federal Acquisition Reform Act of 1996 - Revised procurement laws
facilitate more efficient competition; included improving debriefings,
limiting need for cost/pricing data and emphasizing price versus cost
negotiations, among other items.

Acquisition policies, procedures, and operations within DoD are governed
by two documents. The first regulation is DoDD 5000.1, The Defense
Acquisition System. The second is DoDI 5000.2, Operation of the Defense
Acquisition System.

DoD Directive 5000.1, The Defense Acquisition System – Identifies the key
officials and panels for managing the system and provides broad policies
and principles that guide all defense acquisition programs.

DoD Instruction 5000.2, Operation of the Defense Acquisition System –
Establishes a simplified and flexible management framework for translating
joint capability needs and technological opportunities into stable, affordable,
and well-managed acquisition programs. It applies to all defense technology
projects and acquisition programs, although some requirements where stated
apply only to MDAPs and MAISs.
It implements the policies and principles set forth in the directive.

There are other laws, regulations, and guidance that apply to acquisition,
such as the FAR (which has a DoD supplement) and laws relating to
Environment, Safety, and Occupational Health (ESOH). CJCSI 3170.01E
deals with the JCIDS, which is a process to determine the capabilities needed

197

by the warfighter, and, ultimately, the requirements of the systems we
acquire.

Defense Acquisition Guidebook - provides non-mandatory guidance on
best practices, lessons learned, and expectations.

Federal Acquisition Regulation - the primary regulation for use by all
Federal agencies for the acquisition of supplies and services with
appropriated funds. The FAR guides and directs DOD Program Managers in
many ways including acquisition planning, competition requirements,
contract award procedures, and warranties. DOD has supplemented the FAR
to describe its own procedures with the Defense Federal Acquisition
Regulation Supplement (DFARS).

Environment, Safety, and Occupational Health Requirements (ESOH) -
The Program Manager must ensure the system can be produced (Service
specific issue), tested, fielded, operated, trained with, maintained, and
disposed of in compliance with environment, safety, and occupational health
(ESOH) laws, regulations and policy (collectively termed ESOH
requirements). The goal of ESOH law is to protect human health and
safeguard the environment. The DoD goal is to safeguard the environment,
reduce accidents, and protect human health. The most effective means to
meet this DoD goal is by managing risks.
PMs should also be aware how different aspects of laws, regulations and
policies affect their ability to implement this goal over the system’s life-
cycle. Acquisition program offices need to address ESOH requirements
because they can impact the cost, schedule, and performance of the system.
As part of risk reduction, the Program Manager is responsible for identifying
the applicable ESOH requirements and ensuring that they consult with the
user to make informed decisions about whether, or to what degree, the
system conforms to the applicable ESOH requirements.

Effective ESOH Risk Management Practices - DoD acquisition policy
requires the Program Manager to document the program process, the
schedule for completing National Environmental Policy Act (NEPA)
documentation, and the status of ESOH risk management in a Programmatic
ESOH Evaluation (PESHE). The PESHE is not intended to supersede or
replace other ESOH plans, analyses, and reports (e.g., System Safety
Management Plans/Assessments, Hazardous Materials Management Plans,
NEPA documents, Health Hazard Assessments [HHA], etc.); it is a
management and reporting tool for the Program Manager.

ESOH Requirements - ESOH requirements are driven from the top by
federal (including Executive Orders), state, and local ESOH laws and
implementing regulations. DoD and Component policies implement the law,
and frequently include additional requirements. ESOH requirements:
• Establish the methods and mechanisms of a process for compliance.
• May impose civil injunctions resulting in program delays if the

compliance process is not properly planned and executed.
• Mandate legal compliance requirements and processes.
• Assign compliance responsibility, primarily to the facility and

installation managers and maintainers.
• For acquisition programs the Program Manager is responsible for

considering ESOH requirements and their effects throughout the system
life-cycle when making design decisions.

198

• Impose criminal and/or civil penalties for lack of compliance, which may
or may not be applicable to federal agencies and individuals.

System design and functionality, materials used, and operational parameters
drive the extent of ESOH compliance requirements. ESOH impacts must be
considered as an integral part of any acquisition systems engineering effort.
Incorporating safety and human systems engineering into design enhances
performance and lowers the risk of mishaps.

National Environmental Policy Act (NEPA) - The major law directly
affecting DOD systems acquisition management is the NEPA, requiring the
DOD to:
• Provide full disclosure of possible impacts, alternatives, and mitigation

measures.
• Consider the environment in its decisions.
• Inform and involve the public in that process.
• Seek less environmentally damaging ways to accomplish the mission or

operation.
• Support informed decisions with quality documents. All acquisition

programs, regardless of size, must evaluate whether the development,
testing, production, fielding, operation and maintenance, and disposal of
the system will affect the environment.

PMs should design the system in such a way as to minimize any negative
impact on human health and the environment. DoD policy requires the
Program Manager of each systems acquisition program to prepare a NEPA
Compliance Schedule. The NEPA Compliance Schedule is required as part
of the PESHE, and should be integrated into the overall program schedule.

H7.3 Acquisition decision support systems
Planning, Programming, Budgeting, and Execution - The Planning,
Programming, Budgeting and Execution (PPBE) process is DOD’s primary
resource allocation process that:
• Is a calendar-driven process used for securing funding for a major

acquisition program.
• Offers the basis for informed affordability assessment and resource

allocation decisions.
• Provides a formal, systematic structure for making decisions on policy,

strategy, and the development of forces and capabilities to accomplish
anticipated missions.

Joint Capabilities Integration and Development System - The JCIDS:
• Is driven by warfighting deficiencies or needs.
• Determines mission requirements and strategies for meeting those

requirements.
• Provides the basis for establishing priorities.

Acquisition Management System - The Acquisition Management System:
• Establishes a management process to translate user needs and

technological opportunities into reliable and sustainable systems that
provide capability to the user.

• Is an event-driven process that emphasizes risk management.
• Involves the process of periodic review and approval of programs to

progress into subsequent phases of the acquisition life cycle.
• Provides a streamlined management structure.
• Links milestone decisions to demonstrated accomplishments.

199

Appendix I
Data Collection

Historical software data from the development process is crucial to cost
analysts in predicting and validating size, cost, and schedule for existing and
future software development projects. The data collection approach
described here is intended to populate a repository for data collected during
the software development process.

The data contains key information for each individual software component
or Computer Software Configuration Item (CSCI) within a single project.
Data is collected at various maturity levels during the development process.
Ideally, data should be collected at each of the major development
milestones, starting with the concept phase through final qualification
testing, to assist in the resolution of the project status and growth. A
fundamental principle behind any data collection effort is validation of all
data prior to it becoming part of the database. Without validation, the data is
meaningless and of no value. The process involves establishing a common
set of references (definitions and timeframes) for the possible estimating
models, determining the development environment, and carefully examining
the data to ensure it is factual and realistic.

The data collected for each CSCI describes the basic information such as
product sizing (new, modified, and reused code), the development effort and
maturity, and the development environment (language, experience, and so
forth). The data fields should allow easy input regardless of the model used
to create the data.

I.1 Software data collection overview
The purpose of this series of data collection definitions and instructions is to
obtain the characteristics of software projects and their respective
development environments for future use in software cost estimating. This
data can be included in a database of software product sizes, schedules,
effort, environment, and other factors that analysts can use to compare and
validate software cost estimates for new and developing systems.

I.1.1 Model comparisons
The set of estimating models used in the data collection definitions include
the PRICE STM model, the Galorath Incorporated System Evaluation and
Estimation of Resources - Software Estimating ModelTM (SEER-SEMTM)
model (now SEERTM for Software), the COnstructive COst MOdel
(COCOMO/COCOMO II) developed by Dr. Barry Boehm et al, the
Software Engineering Inc. SageTM model developed by Dr. Randall Jensen,
the REVised Intermediate COCOMO (REVIC) model developed by
Raymond Kile and the Air Force Cost Analysis Agency (AFCAA), and the
Quantitative Software Management Software Lifecycle Management Model
(SLIM®) developed by Larry Putnam. Instructions and definitions within
this section include a table that provides a cross-reference between the
models to help clarify the data entries and relationships.

Real knowledge is to know the extent
of one's ignorance.

 Confucius

200

Most common estimating models use similar parameters to describe project
development environments. The set of parameter descriptions used in this
data collection section focuses on six widely used models as the context for
describing CSCIs. However, definitions and rating scales for the individual
parameters vary between models. For example, the Analyst Capability
(ACAP) parameter definition for a value of “0” in the data collection model
corresponds to a Sage value of “Highly motivated AND experienced team
organization” and a SEER-SEMTM value of “Near Perfect Functioning Team
(90th Percentile).” The Sage model range for ACAP is from 0.71 to 1.46.
The SEER-SEMTM range is from Very Low to Very High. The database
normalizes the model scales by using a value from 0 to 10 for all estimating
environment parameters.

None of the estimating models have identical parameter sets, for example,
the personnel environment. The Sage, SEER-SEMTM and REVIC models
use a Language Experience (LEXP) parameter, the PRICE STM model uses a
CPLX1 parameter, and COCOMO II uses a Language and Tools Experience
(LTEX) parameter. Occasionally, estimating model parameters from one

Table I-1: Estimating model parameter comparison

Tool

Personnel Support

A
C

A
P

P
C

A
P

P
R

O
FA

C

A
E

X
P

D
E

X
P

LE
X

P

P
E

X
P

TE
X

P

D
S

Y
S

D
V

O
L

M
O

D
P

P
IM

P

P
V

O
L

R
U

S
E

S
C

E
D

TO
O

L

COCOMO II X X APEX VEXP LTEX X PVOL X X X X X

PRICE-S CPLX1 ACAP X CPLX1 CPLX1 CPLX1

REVIC X X X VEXP X PLEX/
VEXP VIRT X VIRT X X X

Sage X X X X X X X X X X X X X X X

SEER-SEM X X X X X X X X X X X X X X X

SLIM P1

Tool

Management Product

M
C

LS

M
O

R
G

M
U

LT

P
C

O
N

R
LO

C

C
P

LX

D
A

TA

D
IS

P

H
O

S
T

IN
TE

G
E

IN
TE

G
I

M
E

M
C

P
LA

T

R
E

LY

R
TI

M

R
V

O
L

S
E

C
R

TI
M

C

TV
O

L

COCOMO

II SITE X X X STOR X TIME

PRICE-S CPLXM X X X UTIL PLTFM X UTIL

REVIC SECU SITE X X STOR X X X TIME

Sage X X X X X X X X X X X X X X

SEER-
SEM X X X X X X X X X X X X X X

SLIM

201

model do not map directly to another or a parameter may include the effects
of two or more parameters. For example, the REVIC VEXP (Virtual system
experience) parameter collectively represents the SEER-SEMTM DEXP
(Development system experience) and PEXP (Practices experience)
parameters. Table I-1 compares the major estimating model parameters used
in the data collection discussion.

I.1.2 Format
The data collection form description defines the full set of data elements
necessary to describe a software development project. The data elements are
compatible with commonly used cost estimating models, enabling easy
transfer of data using familiar terms and definitions. The data for each CSCI
includes: (1) CSCI description, (2) size data, (3) development environment
data, (4) software development actuals – cost and schedule, and (5) data
validation results.

The bulk of the data collection form is used to collect size data for the
software development project and the environment in which the software
product is developed.

Development effort, as implemented in the major estimating models, is in
the form:

β
ekld SCCE = (I-1)

where the development effort (Ed), measured from the start of full-scale
development (Software Requirements Review [SRR]) through successful
completion of acceptance testing by the developer, is the product of the
development environment impact and the adjusted effective size. The terms
are defined as:

C1 = scaling constant,

Ck = environment adjustment factor,

Se = effective software size, and

β = entropy factor (usually about 1.2) representing a size penalty for
large software developments.

It is necessary to collect both size data and environment factors to accurately
relate the development effort and productivity to the software product.

The effective software development size is a measure of the work required to
produce a software product based on an equivalent product containing only
new source lines of code or function points.

The development environment adjustment factors account for a multitude of
impacts on the development effort due to developer capability, languages,
and tools, as well as constraints imposed on the developer such as product
requirements, development standards, and pre-existing product limitations.
There are a total of 35 environment adjustment factors as depicted in Table I-
1 that can be collected in the data collection form. The form allows the user
to specify the factors to be collected according to the dictates of one of six
formats: (1) COCOMO/ COCOMO II, (2) Price-S, (3) REVIC, (4) Sage, (5)
SEER-SEMTM and (6) SLIM®. The selected format is specified by the user
as a data element in the collection form.

The CSCI level is the level defined by independent requirements
specifications (SRS) and interface control specifications (IRS). The CSCI

202

component level is compatible with estimating models and is the project
level for tracking and comparison of software functionality represented by an
independent task.

I.1.3 Structure
The data collection structure is arranged into three primary data groups:
project summary data, CSCI information, and environment information. The
specific CSCI data contains the general “CSCI Information” (a row in the
spreadsheet representation of Table I-2) and the “Environment” information.

Project Summary Data identifies and describes the software system product
and lists developers or contractors and the related contact information as
well as general comments regarding the project. The comment field allows
the individual(s) entering information to describe additional relevant project
information such as new functionality for this activity or that an Engineering
Change Proposal (ECP) affected certain CSCIs. The Project Summary Data
(Table I-3) description encompasses a set of project-related CSCIs.

The CSCI information section lists each individual component by CSCI
along with a description, maturity or status at the time of entry, and the
reference model or tool used to originally develop the data.

The Environment section of the data entry form contains several subsections
to capture the information relevant to the parameters associated with size,
product, and development environment.

I.2 Software data collection details
The CSCI data entry forms (spreadsheet format) are model independent. In
other words, independent of the model that was used in creating the project
estimate data, the model definitions, phraseology, or methodology used to
track the project data, the information will transfer accurately onto the data
entry form. The parameter definitions include cross-references to like values
in the major cost estimation models as well as the parameter Complexity
Attribute (CA) definitions defined originally by Barry Holchin85

I.3 CSCI description
.

The following descriptions identify the data needed in each field and may
include an example of the type of data to be entered:

85 Barry Holchin, known for 1996 Code Growth Studies, developed Complexity
Attributes for government contract software development data gathering efforts.

Table I-3: Project summary data
Equiv
CMMI
Level

CSCI
Status

Subcontr
%

Estimating
Tool Env Platform Application Reserved Reserved

3 FQT 0 Sage Mil Space Bus

Table I-2: CSCI information

PROJ CSCI
ID

SUB
CSCI

ID
VER

Product CSCI Attributes

Contractor
POC

Description
Name Phone E-mail

Milstar Bus Antenna
C+1 7 ACME J.P.

Jones

310-
555-
1324

jpjones@acme.com
2014 virtual
antenna
control

203

PROJ: Identifies the major acquisition program that contains the CSCI (e.g.,
MilStar).

CSCI ID: An alphanumeric name identifying the CSCI.

SUB CSCI ID: An alphanumeric designation identifying next level
breakdown of the primary CSCI, if applicable.

VER: Identify the version number of the CSCI software being reported, i.e.
v1.0, v2.0, Satellite 2-5, xyz, etc.

Contractor: The prime or sub-contractor involved in development of the
CSCI, with point of contact information.

Description: The text description of the CSCI, the sub-CSCI functionality.

Equivalent CMMI Level: Configuration Maturity Model Integration
(CMMI) assessment rating pertaining to the CSCI developer.

CSCI Status: Development stage of the CSCI.

Subcontractor %: Percentage of overall CSCI being developed by the
subcontractor.

Estimating Tool: Estimating model (or estimating tool) utilized to develop
the database CSCI data, (i.e., SEERTM, Sage, Price, etc.).

Environment: Product taxonomy description for acquisition environment.

 COM: Commercial acquisition environment description

 GOV: Government acquisition environment description

 MIL: Military acquisition environment description

Platform: Taxonomy descriptor for product platform

 SPACE: Unmanned space platform

 MANSPACE: Manned space platform

 AVIONIC: Avionic space platform

 MOBILE: Mobile software platform

 GROUND: Fixed ground software platform

 NAUTICAL: Nautical software platform

MANUFACTURING: Manufacturing system software platform

Application: Taxonomy descriptors for specific application areas.

 PAYLOAD: Spacecraft payload

 EXEC: Operation system/System executive

 SUPPORT: Development and systems support applications

 BUS: Spacecraft bus

 OPSCTL: Operations and control application

 PLAN: Missions planning application

 TEST: Test and simulation software

 TRAINING: User or maintenance training application

SIGNAL PROCESSING (SigProc): Signal processing application

204

Table I-5: System integration data

System Integration

Progs
Concur

Concur of
I&T Sched

Hardware
Integ (%)

3 Nominal 28

 COMMUNICATIONS: Communications software application

 DATABASE: Database management/information system

 MIS: Management information system

Reserved: Taxonomy identifiers not assigned.

I.3.1 Requirements
The CSCI information includes a description of the software requirements
development activity; that is, a description of the work to be performed prior
to the start of full-scale development. This is outside the effort used to
determine the productivity rate, but is important in the computation of the
overall development effort. The necessary elements are: the relative
percentage of requirements completed before the start of the project, the
formality of the requirements, and an indication of whether or not the
software development effort includes the support effort following the start of
full-scale development.

% Comp @ Start: Amount of requirements development/specification
(Table I-4) effort which will be complete at contract award.

Formality: Formality to which software requirements will be analyzed and
specified. This parameter specifies the amount of effort added to the
development estimate to support the definition prior to the start of
requirements full-scale development. This effort includes definition,
specification and review of software function, performance, interface, and
verification requirements. The formality rating is specified as a percentage,
typically in the range of 0-15% relative to the full-scale development effort.

Effort After Base: Software requirements that were supported after the up-
front software requirements activity is complete.

I.3.2 Systems integration
Systems integration accounts for the effort expended to support the
integration of the software product into a higher level system
(Table I-5). A stand-alone software product has zero integration
effort.

Progs Concur: Number of CSCIs that will be concurrently
integrated with the developed software and interface with it
directly.

Concur of I&T Sched: Degree of concurrency or overlap
between the development activities and the integration and testing
activities. The rating is as follows:

Nominal System integration occurs after CSCI testing is complete.
High System integration begins during CSCI integration.
Very High Majority of system integration occurs prior to CSCI

development testing completion.
Extra High All systems integration occurs during CSCI development.

Hardware Integ: Degree of difficulty in integrating the development
software with the operational or target hardware. This parameter relates to
the relative effort required in software-hardware integration. Ratings are
specified as percentages, and are typically in the range of 0-32% relative to
the full-scale software development effort. This effort is in addition to the

Table I-4: Requirements data

Requirements

% Comp
@ Start Formality

Effort
After
Base

93 8% no

205

development effort (0% corresponds to no hardware integration, 32%
corresponds to significant hardware integration effort with concurrent
hardware development.)

I.4 Size data

I.4.1 Sizing data
The “Sizing Data” group of the data collection worksheet is segmented into
major elements and further separated into more definitive sub-elements.
Size data is employed to assemble the estimate for the CSCI development
software effort. Software size can be specified as source lines of code (Table
I-6) (SLOC) or as function points.

The major segments of the sizing data with appropriate sub-
elements are as follows:

1. Source Code (KSLOC)
2. Reuse Adjustments
3. Software Source
4. Function Points
5. Programming Source Language
6. Requirements
7. System Integration

I.4.1.1 Source code (KSLOC)
Total: Describes the total size of the program in thousands of source lines of
code (KSLOC). This value relates to physical size characteristics and is
determined by adding the new, modified and reused source code.

New: Specifies the number of source lines of code (KSLOC) to be created.

Reused: Total unmodified source code (KSLOC). Reused source code is
alternately described as Verbatim or used without rework.

Modified: Specifies the amount of pre-existing source lines of code
(KSLOC) at the module level to be modified in order to add or change an
existing functionality in the developed CSCI. Modified code, by definition,
is contained in reused (pre-existing) white-box modules. If one countable
SLOC within a module is added, deleted, or modified, the entire countable
SLOC in the module is counted as modified SLOC.

Effective (KESLOC): Measure of work required to produce a software task.
Based on the number of KSLOC to be produced, the effort to understand the
existing software testing and integration effort required.

I.4.1.2 Reuse adjustments
The reuse adjustments (Table I-7) are represented by %RD, %RI, and %RT.

%RD: The amount of redesign (software architecting and detailed design)
that is required to make the pre-existing software functional within the
software item. The redesign factor includes effort required to make: (1)
software architecture changes, (2) software detailed design changes, and (3)
documentation updates. This factor also includes reverse-engineering
required to (1) understand the software prior to updates and deletions, and

Table I-6: Source code sizes
Source Code (KSLOC)

Total New Reused Modified Effective

 45.9 3.9 42 0 7.6

Table I-7: Reuse data

Reuse Adjustments

%RD %RI %RT

.50 .50 .75

206

(2) revalidate the software design. The value is specified as a decimal
fraction.

%RI: The portion of the pre-existing code that requires re-implementation
(coding and unit testing) to make it functional within the software item. The
implementation factor includes effort required to: (1) evaluate interface
definitions for changes in reused software, (2) code changes to the reused
software, (3) formally review code changes, and (4) perform unit testing of
code impacted by the changes to the implementation. The value is specified
as a decimal fraction.

%RT: The effort required to test the pre-existing software, expressed as a
portion of the effort that would have been required had the software been
developed from scratch. The test factor includes effort required to: (1)
update test plans and procedures, (2) develop test drivers and simulators, (3)
perform formal integration testing, and (4) generate test reports for the
updated reused software. The value is specified as a decimal fraction.

I.4.1.3 Software source
SW Source: For pre-existing code, name of original software system (Table
I-8) that contributed the source code (e.g., Milstar).

I.4.1.4 Function points
Function points are an alternative measure for
specifying the size (Table I-9) of a software system
that quantifies the information processing
functionality associated with major external data or
control input, output or file types. The counting
guidelines are specified according to the definitions
and counting rules published by the International
Function Point Users Group (IFPUG) in the
Function Point Counting Practices: Manual Release
4.2.

UFP: Unadjusted function point count.

VAF: Value adjustment factor modifies the UFP count to account for
software technical and operational characteristics.

I.4.1.5 Programming source language
The programming source language (Table I-10) is the primary programming
language(s) used by the programmers in the development of the software
product. The language name(s) should correspond to the source language
count.

Program Source Lang: The implementation language for the software
product.

I.5 Development environment data
The development effort and schedule data cannot be determined by the size
data alone as described in Equation (I-1). The environment adjustment
factor Ck accounts for all of the environmental effects present in the software
development. The effects can be grouped into the following four categories:

1. Personnel
2. Support

Table I-8:
Reuse source

SW
Source

Milstar

Table I-9: Function Point Data

Function Points

New Deleted Modified UFP VAF

50 3 7 40 1.2

Table I-10:
Source language

Program
Source

Language

C++/Ada

207

3. Management
4. Product

The purpose of the CSCI environment (Attributes) data (Table I-11) is to
capture pertinent, valid information relating to the economic and time
expenditures on a project that translate into project costs. The availability of
this project information allows the cost and schedule to be estimated in such
a way as to reduce the risk of either over or under estimating effort and
schedule.

The project environment factors are entered in the development environment
section using the 0 to 10 attribute ratings described in Section I.8
(Development environment attributes) for each of the parameters.

The Attribute Ratings are generic descriptors for the various values
associated with the particular model that the data was created or tracked in.
Not all cells will have values.

I.6 Cost, schedule data
The next data group to be collected is the effort (person-months), schedule
and development technology constant (Table I-12). This data must be
collected at the end of formal development; that is, the Final Qualification
Test (FQT) associated with the customer acceptance of the CSCI. The data
to be collected includes three major activities:

1. The effort expended prior to the start of full-scale development that
corresponds to the acceptance of the SRS and ICD

2. The total full scale development effort including architecture design,
code and unit test, and CSCI integration

3. The effort required for integration of the CSCI into the next higher
assembly (Initial Operational Capability)

The schedule measures the elapsed time (months) from the start of full-scale
development through FQT.

The development productivity is computed from the ratio of the effective
SLOC (ESLOC) eS and the full-scale development effort ; that is,

de ESPR /= lines per person-month (ESLOC/PM) (I-2)

Productivity is often stated in hours per ESLOC or ESLOC per hour. The
basis of the LPPM measure is generally assumed to be 152 hours per person-

dE

Table I-11: Environment data

3

4
5

6

7

8

Z AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ BA BB BC BD BE BF BG BH

7 4 5 6 4 4 0 2 2 5 2 5 6 5 3 7 8 8 3 6 7 5 4 9 7

5 4 5 1 2 6 5 3 2 0 5 4 5 8 4 0 4 4 4 3 8 9 7 0 4 3

D
E

X
P

D
V

O
L

Support Management

P
C

A
P

P
R

O
FA

C

A
E

X
P

Personnel

TE
X

P

LE
X

P

D
S

Y
S

P
C

O
N

P
IM

P

P
V

O
L

R
U

S
E

S
C

E
D

TO
O

L

M
C

LS

M
U

LT

P
LA

T

R
LO

C

D
IS

P

H
O

S
T

IN
TE

G
E

IN
TE

G
I

Attribute Ratings (0-10)

M
O

D
P

C
P

LX

D
A

TA

P
E

X
P

A
C

A
P

M
O

R
G

R
E

LY

R
TI

M

R
V

O
L

M
E

M
C

Product

S
E

C
R

TV
O

L

TI
M

C

208

month. A basis of 160 hours per person-month (PM) is sometimes used, but
that occurrence is rare.

ESLOC per PM: Effective source lines of code per person-month are one of
many productivity measures. This measure specifies the rate of ESLOC
production.

Req Analysis: The number of months (PM) expended in performing
requirements analysis prior to the start of full-scale development (Software
Requirements Review).

Full-Scale Development: Total effort (PM) for analysis, development, and
first level CSCI integration.

Integration Test: The number of months (PM) expended to perform
integration testing.

Elapsed Schedule: The number of months elapsed since the beginning of
the full-scale software development. The maximum elapsed schedule occurs
at the end of the FQT.

Milestone Status: The point in the project life cycle that this information is
obtained from (for example: SDR, PDR, CDR, FQT, etc.).

The values for requirements analysis, full-scale development, integration
test, and elapsed schedule are actual measurements at FQT. The values at
earlier milestones are projections or estimates. The important data at pre-
FQT milestones is related to the project size, which tends to increase during
development.

I.7 Technology constants
Technology constants (Table I-13) are measures of the efficiency, capability,
or “goodness” of the development organization. The basic technology
constant describes the developer’s raw capacity unimpeded by the project
constraints or project imposed environment. The effective technology
constant includes the efficiency limitations imposed by the software
development constraints and directly impacts the effort (cost), schedule, and
productivity.

Basic Technology Constant (Ctb): The basic technology constant is
typically between 5,500 and 7,500. The Ctb value is obtained from the Sage
and/or SEER-SEMTM estimating tools or can be calculated from the
development environment attributes. The basic technology constant is
formally defined in Section 8.2.

Effective Technology Constant (Cte): The effective technology constant is
the resulting technology measure that accounts for the degradation of the
development team efficiency due to the limitations of the environment and
product constraints. The effective technology constant is always less than

Table I-12: Development effort and schedule data
Current Effort (PM) Current Schedule

SLOC
per PM

Req.
Analysis

(PM)

Full-
Scale
Devel
(PM)

Integration
Test
(PM)

Elapsed
Schedule
(Months)

Milestone
Status

125 242 1874 483 25.5 SDR

Table I-13:
Technology

constants
Technology
Constants

Basic Effective

6,474.8 3,150.2

209

the basic technology constant. The effective technology constant is formally
defined in Section 8.2.

I.8 Development environment attributes
The remainder of this appendix consists of tables presenting the various
project environment factors which are entered in the development
environment. The parameters are grouped by the four categories explained
in Section I.5. Additional information may be applicable and, if so, is
provided following the relevant rating value table.

Note that not all cells or rows will have values that apply to that factor.

I.8.1 Personnel
Detailed discussion of the personnel parameters (Tables I-14 through I-21)
are contained in Sections 8 (Developer capability evaluation) and 9
(Development environment evaluation).

Table I-14: ACAP rating values

ACAP – Analyst Capability

Value CA Definition 7 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0

Near
Perfect/Perfect
Functioning Team
(90-100th
percentile)

Highly
motivated
AND
experienced
team
organization

Near Perfect
Functioning
Team (90th
percentile)

90th percentile 90th percentile Outstanding
crew

1

2 Extraordinary (80th
percentile)

Highly
motivated OR
experienced
team
organization

 Extensive
experience

3 Extraordinary
(75th percentile) 75th percentile 75th percentile

4
Functional AND
Effective (60th
percentile)

5 50th percentile

Traditional
software
development
organization

Functional AND
effective (55th
percentile)

55th percentile 55th percentile Normal crew

6

7 Mixed
experience

8
Functional with
low effectiveness
(30th percentile)

Poorly
motivated OR
non-
associative
organization

Functional with
low affectivity
(35th percentile

35th percentile 35th percentile

9 Relatively
inexperienced

10
Non-functioning
team (5-15th
percentile)

Poorly
motivated
AND non-
associative
organization

Poorly
functioning or
non-functioning
team (5-15th
percentile)

15th percentile 15th percentile

210

Table I-15: PCAP rating values

PCAP – Programmer Capability

Value CA Definition 31 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0

Near
Perfect/Perfect
Functioning Team
(90-100th
percentile)

Highly
motivated
AND
experienced
team
organization

Near Perfect
Functioning
Team (90th
percentile)

90th percentile 90th percentile Outstanding
crew

1

2 Extraordinary
(80th percentile)

Highly
motivated OR
experienced
team
organization

 Extensive
experience

3 Extraordinary
(75th percentile) 75th percentile 75th percentile

4
Functional AND
Effective (60th
percentile)

5 50th percentile

Traditional
software
development
organization

Functional AND
effective (55th
percentile)

55th percentile 55th percentile Normal crew

6

7 Mixed
experience

8
Functional with low
effectiveness
(30th percentile)

Poorly
motivated OR
non-
associative
organization

Functional with
low affectivity
(35th percentile

35th percentile 35th percentile

9 Relatively
inexperienced

10
Non-functioning
team (5-15th
percentile)

Poorly
motivated
AND non-
associative
organization

Poorly
functioning or
non-functioning
team (5-15th
percentile)

15th percentile 15th percentile

Table I-16: PROFAC rating values

PROFAC – Productivity Factor

Value CA Definition 36 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0
More than four
years average
experience

 14

1 13

2
Three years
average
experience

 12

3 11

211

PROFAC – Productivity Factor

Value CA Definition 36 Sage SEER-SEM REVIC` COCOMO II PRICE-S

4 Two years average
experience 10

5 9

6 One year average
experience 8

7 7

8
Four months
average
experience

 6

9 5

10
Less than four
months average
experience

 4

Table I-17: AEXP rating values

AEXP – Application Experience

Value CA Definition 5 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0

More than 10
years average
experience or
reimplementation
by the same team

More than 10
years average
experience or
reimplementation
by the same team

More than 10
years or
reimplementation
by the same team

1 Familiar product

2
Seven years
average
experience

Seven years
average
experience

3 Six years average
experience

Six years
average
experience

Six years
average
experience

4

5
Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

Normal, new
product

6
7

8 One year average
experience

One year average
experience

One year average
experience

One year
average
experience

One year
average
experience

9
Six months
average
experience

Six months
average
experience

New line of
business

10
Less than four
months
experience

Less than four
months
experience

Less than four
months
experience

Two months
average
experience

Two months
average
experience

212

Table I-18: DEXP rating values

DEXP – Development System Experience

Value CA Definition 4 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
More than four
years average
experience

More than four
years average
experience

More than four
years average
experience

More than four
years average
experience

1

2
Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

3

4
Two years
average
experience

Two years
average
experience

Two years
average
experience

Two years
average
experience

Two years
average
experience

5

6 One year average
experience

One year
average
experience

One year
average
experience

One year
average
experience

One year
average
experience

7

8
Four months
average
experience

Four months
average
experience

Four months
average
experience

Four months
average
experience

Four months
average
experience

9

10
Less than four
months
experience

Less than four
months
experience

Less than four
months
experience

Less than four
months
experience

Less than four
months
experience

Table I-19: LEXP ratings values
LEXP – Programming Language Experience

Value CA Definition 6 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
More than four
years average
experience

More than four
years average
experience

Six years
average
experience

Six years
average
experience

1
Four years
average
experience

2
Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

3

4
Two years
average
experience

Two years
average
experience

Two years
average
experience

5 Normal

6 One year average
experience

One year
average
experience

One year
average
experience

One year
average
experience

One year
average
experience

7
Six months
average
experience

Six months
average
experience

8
Four months
average
experience

Four months
average
experience

Four months
average
experience

9

213

LEXP – Programming Language Experience

Value CA Definition 6 Sage SEER-SEM REVIC COCOMO II PRICE-S

10
Less than four
months
experience

Less than four
months
experience

Less than four
months
experience

Two months
average
experience

Two months
average
experience

New language

Table I-20: PEXP rating values

PEXP – Practices and Methods Experience

Value CA Definition 32 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
More than four
years average
experience

More than
four years
average
experience

Six years
average
experience

Six years
average
experience

1
Four years
average
experience

2
Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

Three years
average
experience

3

4 Two years average
experience

Two years
average
experience

Two years
average
experience

5

6 One year average
experience

One year
average
experience

One year
average
experience

One year
average
experience

One year
average
experience

7
Six months
average
experience

Six months
average
experience

8
Four months
average
experience

Four months
average
experience

Four months
average
experience

9

10 Less than four
months experience

Less than
four months
experience

Less than four
months
experience

Two months
average
experience

Two months
average
experience

Table I-21: TEXP rating values

TEXP – Target System Experience

Value CA Definition 34 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
More than four
years average
experience

More than
four years
average
experience

1
Four years
average
experience

2
Three years
average
experience

Three years
average
experience

Three years
average
experience

3

214

TEXP – Target System Experience

Value CA Definition 34 Sage SEER-SEM REVIC COCOMO II PRICE-S

4 Two years average
experience

Two years
average
experience

Two years
average
experience

5

6 One year average
experience

One year
average
experience

One year
average
experience

7

8
Four months
average
experience

Four months
average
experience

Four months
average
experience

9

10 Less than four
months experience

Less than
four months
experience

Less than four
months
experience

The Target System Experience (TEXP) is the effective average experience
(years) of the development team with the target (final) system on which the
developed software product will execute, including both the hardware
environment and the resident operating system, if any. If the target system is
essentially the same as the development system, then TEXP will be equal to
the Development System Experience (DEXP).

I.8.2 Support
The Development System Complexity (DSYS) parameter (Table I-22) rates
the relative complexity of the development system, compilers, file interfaces
and support environment. This parameter is closely linked to DEXP.

Table I-22: DSYS rating values
DSYS – Development System Complexity

Value CA Definition 35 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 Single module (no
external interfaces)

Single-user
machines
(Windows,
Mac),
standalone
systems, may
be networked

Single user
machines
(Windows, Mac),
standalone
systems, may be
networked

1

2 Loosely coupled
items

3

4

5
Minimum coupling
and timing
constraints

Multi-user
systems (NT
Server, VAX
VMS, UNIX)

Multi-user
systems (NT
Server, VAX
VMS, UNIX)

6

7 Numerous or
complex interfaces

8

9

215

DSYS – Development System Complexity

Value CA Definition 35 Sage SEER-SEM REVIC COCOMO II PRICE-S

10 Tight coupling and
timing constraints

Distributed
network
where
developers
must have
cognizance
of the
distributed
functionality

Distributed
network where
developers must
have cognizance
of the distributed
functionality

Development System Volatility (DVOL) determines the impact of changes
to the development virtual machine. These may be changes in the program
editors, compilers or other tools, changes in the operating system and
command languages, or changes in the development hardware itself.

• REVIC – DVOL (Table I-23) is contained in the Virtual Machine
Volatility (VIRT) parameter. The target system volatility portion of
VIRT is defined by the parameter Target System Volatility
(TVOL).

• COCOMO II – The Platform Volatility Parameter (PVOL) refers to
the complexity of hardware and software (operating system,
database management system, etc.) the software product calls on to
perform its tasks.

Table I-23: DVOL rating values

DVOL – Development System Volatility

Value CA Definition 38 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
No major changes,
minor changes
each year

No major
changes,
minor
changes
each year

No major
changes, minor
changes each
year

1

2
Major change each
12 months, minor
each month

Annual major
changes,
minor
monthly
changes

Major change
each 12 months,
minor each
month

3
4

5
Major change each
six months, minor
each 2 weeks

Semi-annual
major
changes,
minor bi-
weekly
changes

Major change
each six months,
minor each two
weeks

6
7

8
Major changes
each two months,
minor each week

Bi-monthly
major
changes,
minor weekly
changes

Major changes
each two
months, minor
each week

9

216

DVOL – Development System Volatility

Value CA Definition 38 Sage SEER-SEM REVIC COCOMO II PRICE-S

10
Major change each
two weeks, minor
two times a week

Bi-weekly
major
changes,
minor
changes
every two
days

Major change
each two weeks,
minor two times
a week

The Modern Practices (MODP) (Table I-24) parameter evaluates the usage
of modern software development practices and methods at the time the
software design begins. The practices include analysis and design,
structured or object-oriented methods, development practices for code
implementation, documentation, verification and validation, database
maintenance, and product configuration control. The use of modem software
development methods is measured at the start of the formal development
process (SRR) and includes only practices that can be considered
organization culture at that time.

Table I-24: MODP use rating values
MODP – Modern Practices Use

Value CA Definition 20 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 Maximum benefit of
MPPs realized SEI CMMI = 5

Routine use of
a complete
software
development
process

Routine use of a
complete
software
development
process

1

2

3

General use of
MPPs by personnel
experienced in their
use

SEI CMMI = 4
Reasonably
experienced in
most practices

Reasonably
experienced in
most practices

4

5

Some use of MPPs
by personnel
experienced in their
use

SEI CMMI = 3
Reasonably
experienced in
most practices

Reasonably
experienced in
most practices

6

7

8
Beginning
experimental use of
MPPs

SEI CMMI = 2
Beginning
experimental
use of practices

Beginning
experimental use
of practices

9

10 No use of MPPs SEI CMMI = 1

No use of
modern
development
practices

No use of
modern
development
practices

The Process Improvement (PIMP) (Table I-25) parameter evaluates the use
of development technology improvement by comparing established (culture)
development practices with those to be used in the current software
development. The results are then compared with the SEI/CMMI ratings to
measure the level of improvement planned.

217

Table I-25: Process improvement rating values
PIMP – Process Improvement

Value CA Definition 33 Sage SEER-SEM REVIC COCOMO II PRICE-S

0

No change in
Modern
Development
Practices (MDP)
use from the
established
development

No change in
MDP use
from the
established
development

No change in
MDP(MDP) use
from the
established
development

1

2

3

Moderate change –
Organization
improving
development
technologies
equivalent to a 1
level CMMI
transition on the
MDP practices use
rating

Moderate
change –
Organization
improving
development
technologies
equivalent to
a 1 level
CMMI
transition on
the MDP
practices use
rating

Moderate
change –
Organization
improving
development
technologies
equivalent to a 1
level CMMI
transition on the
MDP practices
use rating

4

5

6

7

Major change –
Organization
improving
development
technologies
equivalent to a 2
level CMMI
transition on the
MDP practices use
rating

Major change
–
Organization
improving
development
technologies
equivalent to
a 2 level
CMMI
transition on
the MDP
practices use
rating

Major change –
Organization
improving
development
technologies
equivalent to a 2
level CMMI
transition on the
MDP practices
use rating

8

9

10

Extreme change –
Organization
improving
development
technologies
equivalent to a 3
level CMMI
transition on the
MDP practices use

Extreme
change –
Organization
improving
development
technologies
equivalent to
a 3 level
CMMI
transition on
the MDP
practices
use

Extreme change
– Organization
improving
development
technologies
equivalent to a 3
level CMMI
transition on the
MDP practices
use

The Practices and Methods Volatility (PVOL) (Table I-26) parameter rates
the frequency of changes to the development practices and methods being
used. This rating depends on the scope or magnitude of the changes, as well
as the frequency with which they occur. A minor change is any change that
impacts the development team, but does not require minor delays or

218

adjustments to the process. A major change requires a significant adjustment
to the development process, and has a major impact on the development
effort and schedule.

• REVIC – This attribute is accounted for in the VIRT parameter.

The reusability level required parameter measures the relative cost and
schedule impact software reuse requirements. This factor depends on the
breadth of the required reuse (RUSE) (Table I-27); for example, the relative
cost of a product with single application is lower than that required for
components designed for reuse across a broad spectrum of applications).

 Table I-26: PVOL rating values
PVOL – Practices/Methods Volatility

Value CA Definition 25 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
No major changes,
minor changes
each year

No major
changes,
minor
changes
each year

No major
changes, minor
changes each
year

No major
changes, minor
changes each
year

1

2
Major change each
12 months, minor
each month

Annual major
changes,
minor
monthly
changes

Major change
each 12 months,
minor each
month

Major change
each 12 months,
minor each
month

3

4

5
Major change each
six months, minor
each two weeks

Semi-annual
major
changes,
minor bi-
weekly
changes

Major change
each six months,
minor each two
weeks

Major change
each six months,
minor each two
weeks

6

7

8
Major changes
each two months,
minor each week

Bi-monthly
major
changes,
minor weekly
changes

Major changes
each two
months, minor
each week

Major changes
each two
months, minor
each week

9

10
Major change each
two weeks, minor
two times a week

Bi-weekly
major
changes,
minor
changes
every two
days

Major change
each two weeks,
minor two times
a week

Major change
each two weeks,
minor two times
a week

219

Table I-27: RUSE rating values
RUSE – Reusability Level Required

Value CA Definition 27 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 No reusability
required No reuse No reusability

required No reuse None

1

2

3

Software designed
for reuse within a
single application
area (single
contractor;
multiple/single
customers)

Reuse single
mission
products

Software will be
reused within a
single
application area

Reuse single
mission products Across project

4

5 Across program

6

7

Software designed
for reuse within a
single product line
(multiple
contractors;
multiple/single
customers)

Reuse across
single
product line

Software will be
reused within a
single product
line. Reusability
may impact
multiple
development
teams

Reuse across
single product
line

Across product
line

8

9

10

Mission software
developed with full
reusability required.
All components of
the software must
be reusable

Reuse in any
application

Mission software
developed with
full reusability
required. All
components of
the software
must be
reusable

Reuse in any
application

Across multiple
product lines

The schedule expansion/compression parameter Schedule Constraint
(SCED) (Table I-28) relates the proposed schedule to the optimum
development schedule. Optimum is interpreted in terms of most efficient
personnel utilization or efficiency. Minimum development schedule is
the shortest development schedule possible with a defined size,
complexity, and technology (personnel, tools, etc.).

• Sage, SEER-SEM – The SCED parameter cannot be used to
compress the schedule, since Sage and SEER-SEM compute (by
default) the minimum development time. The SCED parameter
can be used to expand the schedule.

Table I-28: Required schedule rating values

SCED – Required Schedule (calendar months)

Value CA Definition 2 Sage SEER-SEM REVIC COCOMO II PRICE-S

0

Time to
development
completion; 75% of
optimal
development
schedule

Minimum
schedule

Minimum
schedule

<75% use of
available
execution time

<75% use of
available
execution time

220

SCED – Required Schedule (calendar months)

Value CA Definition 2 Sage SEER-SEM REVIC COCOMO II PRICE-S

1 80% of optimal
completion date

2 85% of optimal
completion date

85% use of
available
execution time

85% use of
available
execution time

3 90% of optimal
completion date

4 95% of optimal
completion date

5
Optimal
development
schedule (100%)

Optimum
schedule

Optimum
schedule

100% use of
available
execution time

100% use of
available
execution time

6 115% of optimal
completion date

7 130% of optimal
completion date

130% use of
available
execution time

130% use of
available
execution time

8 145% of optimal
completion date

9 160% of optimal
completion date

160% use of
available
execution time

160% use of
available
execution time

10
Greater than 175%
of optimal
completion date

The automated tool support parameter (TOOL) (Tables I-29 and I-30)
indicates the degree to which the software development practices have
been automated and will be used in the software development. Practices
not considered to be part of the development culture are not considered.
The following list of tools and criteria can be used to aid in selection of
the appropriate value.

Table I-29: Automated tool support levels of automation
V-Low Level of Automation (1950s era toolset) PA=10 Nominal Level of Automation (1970s era) PA=5

Assembler Multi-user operating system

Basic linker Interactive source code editor

Basic batch debug aids Database management system

High level language compiler Basic database design aids

Macro assembler Compound statement compiler

 Extend overlay linker

Low Level of Automation (1960s era) PA=7 Interactive text editor

Overlay linker Simple program design language (PDL)

Batch source editor Interactive debug aids

Basic library aids Source language debugger

Basic database aids Fault reporting system

Advanced batch debug aids Basic program support library

221

 Source code control system

 Nominal Level of Automation (1970s era) PA=5

 Virtual memory operating system

 Extended program design language

High Level of Automation (1980s era) PA=3 V-High Level of Automation (2000s era) PA=1

CASE tools Integrated application development environment

Basic graphical design aids Integrated project support environment

Advanced text editor (word processor) Visual programming tools

Implementation standards enforcer Automated code structuring

Static source code analyzer Automated metrics tools

Program flow and test case analyzer Graphical User Interface (GUI) testing tools

Full program support library w/CM Aids 4GLS (Fourth-Generation Languages)

Full integrated documentation system Code generators

Automated requirements specification & analysis Screen generators

General purpose system simulators

Extended design tools and graphics support

Automated verification system

Special purpose design support tools

Relational Database Management System (RDBM)

Table I-30: Automated tool use rating values

TOOL – Automated Tool Support

Value CA Definition 17 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0 Automated full Ada
APSE

Fully
integrated
environment

Advanced fully
integrated tool
set

Strong, mature,
proactive
lifecycle tools,
well integrated
with processes,
methods, reuse

Strong, mature,
proactive
lifecycle tools,
well integrated
with processes,
methods, reuse

1

2

Fully integrated
application
development
environment

Modern, fully
automated
application
development
environment,
including
requirements,
design, and test
analyzers

Strong, mature
lifecycle tools,
moderately
integrated

Strong, mature
lifecycle tools,
moderately
integrated

3
Moderately
integrated
environment

4

Modern (Ada Min.
APSE & design,
requirements, or
test tools)

Modern visual
programming
tools, automated
CM, test
analyzers plus
requirements or
design tools

222

TOOL – Automated Tool Support

Value CA Definition 17 Sage SEER-SEM REVIC` COCOMO II PRICE-S

5

Extensive
tools, little
integration,
basic maxi
tools

Visual
programming,
CM tools and
simple test tools

Basic lifecycle
tools, moderately
integrated

Basic lifecycle
tools, moderately
integrated

6
Interactive
(Programmer Work
Bench)

Interactive
(Programmer
Work Bench)

7

Simple, front
end, back end
CASE, little
integration

Simple, front
end, back end
CASE, little
integration

8
Basic batch tools
(370 OS type
(compiler, editor))

Basic maxi
tools, basic
micro tools

Basic batch tools
(compiler, editor)

9

10 Primitive tools (Bit
switches, dumps)

Very few
primitive tools

Primitive tools
(Bit switches,
dumps)

Edit, code,
debug

Edit, code,
debug

I.8.3 Management
The management environment effects are discussed in detail in Section 9
(Development environment evaluation).

The Multiple Security Classification (MCLS) (Table I-31) parameter
evaluates the impact of security requirements on the software
development with imposed multiple levels of security classification

• SEER-SEM – The security impact is contained in the Multiple
Development Sites (MULT) parameter.

• REVIC – The multiple classification level impact is contained in
the DoD Security Classification security (SECU) parameter.

Table I-31: Multiple project classification levels rating values

MCLS – Multiple Classification Levels

Value CA Definition 39 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
Multiple
compartment
classifications

 Unclassified
project

1

2

3

Compartment
alized and
non-cleared
personnel

4

5
Classified and
unclassified
personnel

6

7

223

MCLS – Multiple Classification Levels

Value CA Definition 39 Sage SEER-SEM REVIC COCOMO II PRICE-S

8
Common
security
classification

9

10 Classified project

The Multiple Organization (MORG) (Table I-32) parameter evaluates the
impact of multiple development organizations on the development
project. Multiple organizations always arise when mixing personnel
from different contractors. Multiple organizations within a single
organization are possible, and often appear due to organization rivalry.
For example, software, system, and test engineering groups within a
single organization function as separate contractors.

• SEER-SEM – The multiple organization impact is contained in
the MULT parameter.

• PRICE-S – The multiple organization impact is contained in the
management complexity (CPLXM) parameter.

Table I-32: Multiple development organization rating values
MORG – Multiple Development Organizations

Value CA Definition 40 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0
Multiple
contractors;
single site

1

2

3

Prime and
subcontractor
organization;
single site

4

5

6

Developer
using
personnel
from other
organizations

7

8

9

10
Single
development
organization

The multiple development site (MULT) (Table I-33) parameter describes
the physical separation between personnel in the software development
team.

SEER-SEM – MULT; COCOMO II, REVIC – SITE. The MULT and
SITE parameters describe the organizational and site diversity within the
personnel developing the software product. This separation can be due to
physical location, political boundaries, or even security issues. A

224

program being developed in a mixed-security level environment should
be considered as multiple organizations. Advanced communications
techniques, such as e-mail, Wide Area Networks, or teleconferencing can
reduce the impact of physical separation, but will not negate it.

Table I-33: Multiple development sites rating values
MULT – Multiple Development Sites

Value CA Definition 1 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0 Single site, single
organization

All personnel
at a single site
with the same
development
area

Single site,
single
organization

 Fully collocated
Single site,
single
organization

1

2 Same building or
complex

3
Multiple sites
within close
proximity

Single site,
multiple
organizations

4 Same city or
metro area

5
Two sites or
several
organizations

Multiple
development
sites

6 Multi-city or
multi-company

7
Two sites and
several
organizations

Multiple sites
within one
hour
separation

Multiple sites,
same general
location, or
mixed clearance
levels

8 Multi-city and
multi-company

9

Five or more sites
or complex
organization
interfaces

10

Five or more sites
and complex
organization
interfaces

Multiple sites
with greater
than one hour
separation

Multiple sites,
located 50 miles
or more apart, or
international
participation

 International

Multiple sites,
located 50 miles
or more apart, or
international
participation

The personnel continuity (PCON) (Table I-34) parameter describes the
software development team’s average annual turnover rate at the
commencement of full-scale software development. This evaluation is
based on historic— not anticipated— turnover rates.

Table I-34: Personnel continuity rating values
PCON – Personnel Continuity

Value CA Definition 41 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0 3% per year
1

225

PCON – Personnel Continuity

Value CA Definition 41 Sage SEER-SEM REVIC` COCOMO II PRICE-S
2
3 6% per year
4
5 12% per year
6
7 24% per year
8
9
10 48% per year

I.8.4 Product
The product characteristics impacts are discussed in detail in Section 10
(Product characteristics evaluation).

The software complexity rating (CPLX) (Table I-35), also referred to as
staffing complexity, is a rating of the software system's inherent
difficulty to produce in terms of the rate at which staff can be added to a
project. The complexity is affected by the instruction mix (as in PRICE-
S), as well as the algorithmic complexity of the software product.

Table I-35: Product complexity (staffing) rating values
CPLX – Complexity (Staffing)

Value CA Definition 11 Sage SEER-SEM REVIC COCOMO II PRICE-S

0

Extremely simple
S/W with simple
code, simple
input/output (I/O)
and internal
storage arrays

Extremely
simple S/W
with simple
code, simple
I/O, and
internal
storage
arrays

Extremely simple
S/W with simple
code, simple I/O,
and internal
storage arrays

Extremely simple
S/W with simple
code, simple I/O,
and internal
storage arrays

Extremely simple
S/W with simple
code, simple I/O,
and internal
storage arrays

1 User-
defined/math

2

Computational
efficiency has
some impact on
development effort

Low logical
complexity,
simple I/O
and internal
data storage

Low logical
complexity,
simple I/O and
internal data
storage

Low logical
complexity,
simple I/O and
internal data
storage

Low logical
complexity,
simple I/O and
internal data
storage

String
manipulation

3

4

New standalone
systems developed
on firm operating
systems. Minimal
interface problems

New
standalone
systems
developed on
firm operating
systems.
Minimal
interface
problems

New standalone
systems
developed on
firm operating
systems.
Minimal interface
problems

New standalone
systems
developed on
firm operating
systems.
Minimal interface
problems

New standalone
systems
developed on
firm operating
systems.
Minimal interface
problems

Data
Management

5
Typical command
and control
programs

Typical
command
and control
programs

Typical
command and
control programs

Typical
command and
control programs

Typical
command and
control programs

Online command

226

CPLX – Complexity (Staffing)

Value CA Definition 11 Sage SEER-SEM REVIC COCOMO II PRICE-S

6

Minor real-time
processing,
significant logical
complexity, some
changes to OS

7

Significant
logical
complexity,
perhaps
requiring
changes to
development
OS, minor
real-time
processing

Significant
logical
complexity,
perhaps
requiring
changes to
development
OS, minor real-
time processing

Significant
logical
complexity,
perhaps
requiring
changes to
development
OS, minor real-
time processing

Significant
logical
complexity,
perhaps
requiring
changes to
development
OS, minor real-
time processing

Real-time

8

Challenging
response time
requirements, new
system with
significant interface
and interaction
requirements

New systems
with
significant
interfacing
and
interaction
requirements
in a larger
system
structure

New systems
with significant
interfacing and
interaction
requirements in
a larger system
structure

New systems
with significant
interfacing and
interaction
requirements in
a larger system
structure

New systems
with significant
interfacing and
interaction
requirements in
a larger system
structure

Operating
systems/interacti
ve commands

9

10

Very large data
processing volume
in a short time,
signal processing
system with
complex interfaces.

Development
primarily
using micro
code for the
application

Development
primarily using
micro code for
the application

Development
primarily using
micro code for
the application

Development
primarily using
micro code for
the application

The database size (Table I-36) parameter captures the effect that large
data requirements have on the software product development. The rating
is determined by calculating D/P, the ratio of bytes in the database to
SLOC in the program.

Table I-36: Database size rating values
Database Size

Value CA Definition 21 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 No database

1
Database (DB)
size/
SLOC = 5

2

DB size/SLOC =
10. Data easily
managed.
Requirements/struc
ture known.

 D/P SLOC<10 D/P SLOC<10

3

4 DB size/SLOC = 30 10<D/P<100 10<D/P<100

227

Database Size

Value CA Definition 21 Sage SEER-SEM REVIC COCOMO II PRICE-S

5

DB size/SLOC =
55. Nominal DB
size. Not access
bound nor other
critical constraint

6

7 DB size/SLOC =
450 100<D/P<1000 100<D/P<1000

8

DB size/SLOC =
1,000. High
access/performanc
e requirements

 D/P>1000 D/P>1000

9

10

The Special Display Requirements (DISP) (Table I-37) rating specifies
the amount of effort to implement user interface and other display
interactions that cannot be accounted for by product size alone.

Table I-37: DISP rating values
DISP – Special Display Requirements

Value CA Definition 16 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 No displays Simple I/O
requirements

Simple
input/outputs:
batch programs

1

2

3 A few simple
displays

4

User-friendly
(extensive
human
engineering)

User-friendly;
error recovery
and menus,
basic Windows
GUI not
controlled by the
application

5

User-friendly error
recovery and
menus, character
based, window
formats, color

6

7

Interactive: touch
screens, light pens,
mouse, etc.
Controlled by the
computer program
(graphics based –
1990s)

Interactive
(mechanical
user
interface)

Interactive: light
pen, mouse,
touch screen,
windows, etc.
Controlled by the
software being
developed

8

9

High human-in-the-
loop dependencies.
Many interactive
displays, monitors,
or status inputs

228

DISP – Special Display Requirements

Value CA Definition 16 Sage SEER-SEM REVIC COCOMO II PRICE-S

10

Complex
requirements.
Computer-Aided
Design/Computer-
Aided
Manufacturing
(CAD/CAM) Solid
Modeling. Many
interactive displays
or status outputs
(e.g., real-time
alarms)

Complex
requirements
with severe
impact
(CAD/CAM)

Complex:
CAD/CAM, 3D
solid modeling

The software development re-hosting (HOST) (Table I-38) parameter
evaluates the effort to convert the software product from the development
system to the target system. This rating is not applied to projects devoted
to “porting” software from one system to another.

Table I-38: Development re-hosting requirements rating values
HOST – Development Re-hosting

Value CA Definition 19 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 No rehosting
required

No rehosting,
common
language and
system

No rehosting,
same language
and system

1

2

3
Minor language or
minor system
change

Minor
language or
minor system
change

4
Minor language
and system
change

5
Minor language
and minor system
change

Minor
language and
minor system
change

6

7
Major language or
major system
change

Major
language or
major system
change

Major language
system change

8

9

10
Major language
and major system
change

Major
language and
major system
change

Major language
and system
change

The Integration - External (INTEGE) (Table I-39) parameter is used by
PRICE-S to describe the level of difficulty of integrating and testing the
CSCIs at the system level.

229

Table I-39: INTEGE requirements rating values
INTEGE – External Integration

Value CA Definition 30 Sage SEER-SEM REVIC COCOMO II PRICE-S

0

Loosely coupled
interfaces/minimum
operational
constraints

Loosely coupled
interfaces/minim
um operational
constraints

1
2
3
4

5 Nominal coupling
and constraints

Nominal
coupling and
constraints

6
7
8
9

10

Tightly coupled
interfaces/strict
operational
constraints

Tightly coupled
interfaces/strict
operational
constraints

The PRICE-S Integration - Internal (INTEGI) (Table I-40) parameter
describes the level of effort involved in integrating and testing the
software product components up to the CSCI level.

Table I-40: INTEGI requirements rating values
INTEGI – Internal Integration

Value CA Definition 22 Sage SEER-SEM REVIC COCOMO II PRICE-S

0

Loosely
coupled/minimum
constraints and
interaction

Loosely
coupled/minimu
m constraints
and interaction

1
2
3
4

5

Typical/closely
coupled
interfaces/many
interrupts

Typical/closely
coupled
interfaces/many
interrupts

6
7
8
9

10 Tightly coupled,
strict constraints Tightly coupled,

strict constraints

The target system Memory Constraint (MEMC) (Table I-41) rating
evaluates the development impact of anticipated effort to reduce
application storage requirements. This attribute is not simply a measure
of memory reserve, but is intended to reflect the effort required by the
software developers to reduce memory usage. Using 99 percent of
available resources represents no constraint if no effort was required to
conserve resources.

• COCOMO II – The memory constraint (STOR) is used in the

230

COCOMO family of estimating tools to represent the main
storage constraint imposed on a software system or subsystem
development.

Table I-41: Memory constraints rating values

MEMC – Target System Memory Constraints

Value CA Definition 13 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
Greater than 50%
reserve of memory
available

No memory
economy
measures
required

No memory
constraints

Greater than
50% reserve of
memory
available

Greater than
50% reserve of
memory
available

No memory
economy
measures
required

1 45% reserve
available 45% reserve

available
45% reserve
available

2 40% reserve
available 40% reserve

available
40% reserve
available

3 35% reserve
available

Some overlay
use or
segmentation
required

Some overlay
use or
segmentation
required

35% reserve
available

35% reserve
available

Some overlay
use or
segmentation
required

4 30% reserve
available 30% reserve

available
30% reserve
available

5 25% reserve
available 25% reserve

available
25% reserve
available

6 20% reserve
available 20% reserve

available
20% reserve
available

7 15% reserve
available

Extensive
overlay
and/or
segmentation
required

Extensive
overlay and/or
segmentation
required

15% reserve
available

15% reserve
available

Extensive
overlay and/or
segmentation
required

8 10% reserve
available 10% reserve

available
10% reserve
available

9 7% reserve
available 7% reserve

available
7% reserve
available

10 Additional memory
must be provided

Complex
memory
management
economy
measure

Complex
memory
management
economy
measure

Additional
memory must be
provided

Additional
memory must be
provided

Complex
memory
management
economy
measure

The platform (PLAT) (Table I-42) parameter describes the customer's
requirements stemming from the planned operating environment. It is a
measure of the portability, reliability, structuring, testing, and
documentation required for acceptable contract performance.

Table I-42: Software platform rating values
PLAT – Platform

Value CA Definition 42 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 Ground systems Ground systems
1

2 Mil-spec ground
systems Mil-spec ground

systems
3
4 Unmanned Unmanned

231

PLAT – Platform

Value CA Definition 42 Sage SEER-SEM REVIC COCOMO II PRICE-S
airborne airborne

5 Manned airborne Manned airborne

6 Unmanned
space Unmanned

space
7
8 Manned space Manned space
9
10 Manned space Manned space

The Required Software Reliability (RELY) (Table I-43) parameter is the
measure of the extent to which the software product must perform its
intended function over a period of time. If the effect of a software failure
is only slight inconvenience, then RELY is very low. If a failure would
risk human life, then RELY is very high. This parameter defines planned,
or required, reliability; it is not related to the Requirements Volatility
(RVOL) due to inadequate requirements definition and planning. This
cost driver can be influenced by the requirement to develop software for
reusability (see the description for RUSE).

Table I-43: RELY rating values
RELY – Required Software Reliability

Value CA Definition 14 Sage SEER-SEM REVIC COCOMO II PRICE-S

0 Failure results in
loss to human life

Risk to human
life

Risk to human
life

Risk to human
life

Risk to human
life

1

2 High financial loss High financial
loss

High financial
loss

High financial
loss

High financial
loss

3

4

5 Moderate
recoverable loss

Moderate,
easily
recoverable
loss

Moderate,
easily
recoverable
loss

Moderate, easily
recoverable loss

Moderate, easily
recoverable loss

6

7 Minor
inconvenience

Low, easily
recoverable
loss

Low, easily
recoverable
loss

Low, easily
recoverable loss

Low, easily
recoverable loss

8

9

10 No requirement Slight
inconvenience

Slight
inconvenience

Slight
inconvenience

Slight
inconvenience

The Real-time Operations (RTIM) (Table I-44) rating evaluates the
impact of the fraction of the software product that interacts with the
outside environment. Usually, consider these communications as driven
by the external environment or clock. This fraction will be large in
event-driven systems such as process controllers and interactive systems.

232

The real-time rating is related to system behavior, not execution speed.
Speed is evaluated by the TIMC parameter.

Table I-44: RTIM requirements rating values
RTIM – Real-time Operations Requirements

Value CA Definition 29 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
0% of source lines
with real-time
considerations

Less than
25% of source
code devoted
to real-time
operations

0% of source
lines with real-
time
considerations

1

2

3

4
25% of source lines
with real-time
considerations

Approximately
50% of source
code devoted
to real-time
operations

25% of source
lines with real-
time
considerations

5

6

7
75% of source lines
with real-time
considerations

Approximately
75% of source
code devoted
to real-time
operations

75% of source
lines with real-
time
considerations

8

9

10
100% of source
lines with real-time
considerations

Nearly 100%
of source
code devoted
to real-time
operations

100% of source
lines with real-
time
considerations

The system RVOL (Table I-45) parameter evaluates the expected
frequency and scope of requirements changes after baseline (SRR).
Changes include both major and minor perturbations.

Table I-45: System requirements volatility rating values
RVOL – System Requirements Volatility

Value CA Definition 9/10 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0 No changes
Essentially no
requirements
changes

Essentially no
requirements
changes

No changes No changes

1
2

3 Very few changes
expected

Familiar
product, small
noncritical
redirections

Small
noncritical
redirections

Very few
changes
expected

4

5

Minor changes to
requirements caused
by design reviews or
changing mission
requirements

Known
product,
occasional
moderate
redirections

Occasional
moderate
redirections,
typical for
evolutionary
software
developments

Minor changes
to requirements
caused by
design reviews
or changing
mission
requirements

233

RVOL – System Requirements Volatility

Value CA Definition 9/10 Sage SEER-SEM REVIC` COCOMO II PRICE-S

6

Evolutionary
software
development
with significant
user interface
requirements

7

Some significant
changes expected
(none late in
development phase)

Technology
exists,
unfamiliar to
developer

Some
significant
changes
expected (none
late in
development
phase)

 Changing
requirements

8

Frequent
moderate &
occasional
major
changes

9 New hardware

10

Expect major changes
occurring at different
times in development
phase

Technology is
new, frequent
major
redirections

Frequent
major
changes

Expect major
changes
occurring at
different times
in development
phase

Parallel
hardware
development

CPLX1 (PRICE-S) - Complexity (See Requirements Volatility [RVOL]).

The System Security Requirement (SECR) (Table I-46) parameter
evaluates the development impact of application software security
requirements. Apply this parameter only if the software product is
required to implement the security requirement. The Common Criteria
Evaluation Assurance Level (EAL) describes the mission assurance
category assigned to the system and the level of assurance mandated in
the controls (DoDD 8500.1 and DoDI 8500.2).

Table I-46: System security requirement rating values
SECR – System Security Requirement

Value CA Definition 28 Sage SEER-SEM REVIC COCOMO II PRICE-S

0
Class D: Minimal
protection – no
security

CC EAL0:
No security
requirements
(OB Class D)

Class D: Minimal
protection – no
security

1
CC EAL1:
Functional
test

2

Class C1: Access
limited. Based on
system controls
accountable to
individual user or
groups of users.
Simple project
specific password
protection

CC EAL2:
Structural
test (OB
Class C1)

Class C1:
Access limited.
Based on
system controls
accountable to
individual user or
groups of users.
Simple project
specific
password

234

SECR – System Security Requirement

Value CA Definition 28 Sage SEER-SEM REVIC COCOMO II PRICE-S
protection

3

4

Class C2: Users
individually
accountable via
login operations,
auditing of security
relevant events and
resource isolation
(typical VAX
operating system
such as Virtual
Memory
System).VMS).

CC EAL3:
Methodical
test and
check (OB
Class C2)

Class C2: Users
individually
accountable via
login operations,
auditing of
security relevant
events and
resource
isolation (typical
VAX operating
system such as
Virtual Memory
System).VMS).

5

6

Class B1: In
addition to C2, data
labeling and
mandatory access
control are present.
Flaws identified by
testing are
removed (classified
or financial
transaction
processing).

CC EAL4:
Methodical
design, test
and review
(OB Class
B1)

Class B1: In
addition to C2,
data labeling and
mandatory
access control
are present.
Flaws identified
by testing are
removed
(classified or
financial
transaction
processing).

7

8

Class B2: System
segregated into
protection critical
and non-protection
critical elements.
Overall system
resistant to
penetration (critical
financial
processing)

CC EAL5:
Semiformal
design and
test (OB
Class B2)

Class B2:
System
segregated into
protection critical
and non-
protection critical
elements.
Overall system
resistant to
penetration
(critical financial
processing)

9

Class B3: System
excludes code not
essential to
security
enforcement. Audit
capability is
strengthened.
System almost
completely
resistant to
protection.

CC EAL6:
Semiformal
verification,
design and
test (OB
Class B3)

Class B3:
System excludes
code not
essential to
security
enforcement.
Audit capability
is strengthened.
System almost
completely
resistant to
protection.

10

Class A1: Security
formally verified by
mathematical proof
(only a few known
systems)

CC EAL7:
Formal
verification,
design and
test (OB
Class A)

Class A1:
Security formally
verified by
mathematical
proof (only a few
known systems)

235

The system Central Processing Unit (CPU) timing constraint (TIMC)
(Table I-47) rating evaluates the development impact of anticipated effort
to reduce application response time requirements. TIMC evaluates the
impact of limited processor capability and special measures needed to
meet time related performance requirements by specifying the percentage
of application software that must be developed with timing performance
issues incorporated.

• COCOMO II, REVIC – The execution Time Constraint (TIME)
parameter is used by the COCOMO family of estimating tools
to specify the CPU timing constraint impact.

• PRICE-S – The resource utilization parameter UTIL specifies
the fraction of available hardware cycle time, or total memory
capacity. The parameter describes the extra effort needed to
adapt software to operate within limited processor and memory
capabilities.

Table I-47: CPU timing constraints rating values

TIMC – System CPU Timing Constraint

Value CA Definition 12 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0

50% CPU power
still available during
maximum
utilization

No CPU time
constraints

No CPU time
constraints

<50% of source
code time
constrained

<50% of source
code time
constrained

No CPU time
constraints

1

45% CPU power
still available during
maximum
utilization

2

40% CPU power
still available during
maximum
utilization

3

35% CPU power
still available during
maximum
utilization

4

30% CPU power
still available during
maximum
utilization

Approximately
25% of source
code time
constrained

Approximately
25% of source
code time
constrained

Approximately
70% of source
code time
constrained

Approximately
70% of source
code time
constrained

Approximately
25% of source
code time
constrained

5

25% CPU power
still available during
maximum
utilization

6

20% CPU power
still available during
maximum
utilization

7

15% CPU power
still available during
maximum
utilization

Approximately
50% of source
code time
constrained

Approximately
50% of source
code time
constrained

Approximately
85% of source
code time
constrained

Approximately
85% of source
code time
constrained

Approximately
50% of source
code time
constrained

8

10% CPU power
still available during
maximum
utilization

236

TIMC – System CPU Timing Constraint

Value CA Definition 12 Sage SEER-SEM REVIC` COCOMO II PRICE-S

9

7% CPU power still
available during
maximum
utilization

10

5% CPU power still
available during
maximum
utilization

Approximately
75% of source
code time
constrained

Approximately
75% of source
code time
constrained

Approximately
95% of source
code time
constrained

Approximately
95% of source
code time
constrained

Approximately
75% of source
code time
constrained

The target system volatility (TVOL) (Table I-48) parameter rates the
anticipated stability (instability) created by changes and/or failures in the
target system including hardware, tools, operating systems, and
languages or compilers. A major change (or failure) requires redirection
to continue the development. A minor change (or failure) allows
workarounds to practices shortcomings and weaknesses.

Table I-48: TVOL rating values
TVOL – Target System Volatility

Value CA Definition 3 Sage SEER-SEM REVIC` COCOMO II PRICE-S

0 No hardware
development

No major
changes,
annual minor
changes

No major
changes, minor
changes each
year

1

2

3

Small amount of
hardware
development,
localized impact on
software

Annual major
changes,
monthly minor
changes

Major change
each 12 months,
minor each
month

4

5

Some overlaps of
development. Most
hardware available
for testing software
and vice versa

Semiannual
major
changes,
biweekly minor
changes

Major change
each six months,
minor each two
weeks

6

7
Much overlap, little
hardware available
for testing

Bimonthly
major
changes,
weekly minor
changes

Major changes
each two
months, minor
each week

8

9

10

Simultaneous
development,
separate
organizations, etc.

Biweekly
major
changes,
minor changes
every two days

Major change
each two weeks,
minor two times
a week

	Executive Summary
	Acknowledgements
	Section 1
	Introduction
	1.1 Development constraints
	1.2 Major cost factors
	1.2.1 Effective size
	1.2.2 Product complexity
	1.2.3 Development environment
	1.2.4 Product characteristics

	1.3 Software support estimation
	1.4 Guidebook overview
	Section 2
	Software Development Process
	2.1 The Defense Acquisition System
	2.1.1 Framework elements
	2.1.2 User needs and technology opportunities
	2.1.3 Pre-systems acquisition
	2.1.3.1 Concept refinement phase
	2.1.3.2 Milestone A
	2.1.3.3 Technology development phase
	2.1.3.4 Milestone B

	2.1.4 Systems acquisition
	2.1.4.1 System development & demonstration
	2.1.4.2 Milestone C
	2.1.4.3 Production & deployment

	2.1.5 Sustainment

	2.2 Waterfall model
	2.2.1 Requirements analysis and specification
	2.2.2 Full-Scale Development
	2.2.3 System Integration and Test

	2.3 Software development products
	2.3.1 Software Development Plan
	2.3.1.1 Project organization
	2.3.1.2 Schedule
	2.3.1.3 Software Design Document
	2.3.1.4 Quality Plan

	2.3.2 Software Requirements Specification
	2.3.3 Interface Control Document

	Section 3
	Levels of Detail in Software Estimates
	3.1 Estimate foundation factors
	3.2 System-level estimating model
	3.3 Component-level estimating model
	3.4 Estimating process
	Section 4
	System-Level Estimating Process
	4.1 Product complexity
	4.2 Size estimating process
	4.2.1 Effective source lines of code (ESLOC)
	4.2.2 Function point counting

	4.3 Software size growth
	4.4 Productivity factor
	4.4.1 Productivity factor table
	4.4.2 ESC metrics

	4.5 System-level cost estimating
	4.7 Allocate development effort
	4.8 Allocate maintenance effort
	4.8.1 Software enhancement
	4.8.2 Knowledge retention
	4.8.3 Steady state maintenance effort

	Section 5
	Component-Level Estimating Process
	5.1 Staffing profiles
	5.2 Product complexity
	5.3 Size estimating process
	5.4 Development environment
	5.4.1 Personnel evaluation
	5.4.2 Development environment evaluation
	5.4.3 Product impact evaluation
	5.4.4 Basic technology constant
	5.4.5 Effective technology constant

	5.5 Development cost and schedule calculations
	5.6 Verify estimate realism
	5.7 Allocate development effort and schedule
	5.7.1 Effort allocation
	5.7.2 Schedule allocation

	5.8 Allocate maintenance effort
	Section 6
	Estimating Effective Size
	6.1 Source code elements
	6.1.1 Black box vs. white box elements
	6.1.2 NEW source code
	6.1.3 MODIFIED source code
	6.1.4 DELETED source code
	6.1.5 REUSED source code
	6.1.6 COTS software
	6.1.7 Total SLOC

	6.2 Size uncertainty
	6.3 Source line of code (SLOC)
	6.3.1 Executable
	6.3.2 Data declaration
	6.3.3 Compiler directives
	6.3.4 Format statements

	6.4 Effective source lines of code (ESLOC)
	6.4.1 Effective size as work
	6.4.2 Effective size equation
	6.4.2.1 Design factor
	6.4.2.2 Implementation factor
	6.4.2.3 Test factor
	Example – Effective computation with reusable components

	6.5 Size growth
	6.5.1 Maximum size growth

	6.6 Size risk
	6.7 Function points
	6.7.1 Function point counting
	6.7.2 Function point components
	6.7.2.1 Application boundary
	6.7.2.2 Internal Logical File

	Counting Tips:
	6.7.2.3 External Interface File
	6.7.2.4 External Input
	6.7.2.5 External Output
	6.7.2.6 External Inquiry
	6.7.2.7 Transforms
	6.7.2.8 Transitions

	6.7.3 Unadjusted function point counting
	6.7.4 Adjusted function points
	6.7.4.1 Value Adjustment Factor
	6.7.4.2 Adjusted function point calculation

	6.7.5 Backfiring
	6.7.6 Function points and objects
	6.7.7 Zero function point problem

	Section 7
	Productivity Factor Evaluation
	7.1 Introduction
	7.2 Determining productivity factor
	7.2.1 ESC metrics
	7.2.2 Productivity index

	7.3 System-level estimating
	Section 8
	Evaluating Developer Capability
	8.1 Importance of developer capability
	8.2 Basic technology constant
	8.2.1 Basic technology constant parameters
	8.2.1.1 Analyst capability
	8.2.1.2 Programmer capability
	8.2.1.3 Application domain experience
	8.2.1.4 Learning curve
	8.2.1.5 Domain experience rating
	8.2.1.6 Modern practices
	8.2.1.7 Modern tools

	8.2.2 Basic technology constant calculation

	8.3 Mechanics of communication
	8.3.1 Information convection
	8.3.2 Radiation
	8.3.3 Communication barriers
	8.3.3.1 Skunk Works
	8.3.3.2 Cube farm
	8.3.3.3 Project area

	8.3.4 Utensils for creative work

	Section 9
	Development Environment Evaluation
	9.1 Learning curve vs. volatility
	9.2 Personnel experience characteristics
	9.2.1 Programming language experience
	9.2.2 Practices and methods experience
	9.2.3 Development system experience
	9.2.4 Target system experience

	9.3 Development support characteristics
	9.3.1 Development system volatility
	9.3.2 Practices/methods volatility

	9.4 Management characteristics
	9.4.1 Multiple security classifications
	9.4.2 Multiple development organizations
	9.4.3 Multiple development sites
	9.4.4 Resources and support location

	Section 10
	Product Characteristics Evaluation
	10.1 Product complexity
	10.2 Display requirements
	10.3 Rehosting requirements
	10.4 Memory constraints
	10.5 Required reliability
	10.6 Real-time performance requirements
	10.7 Requirements volatility
	10.8 Security requirements
	Appendix A
	Acronyms
	Appendix B
	Terminology
	Appendix C
	Bibliography
	Appendix D
	Software Life Cycle Approaches
	D.1 Waterfall
	D.2 Spiral development
	D.3 Evolutionary development
	D.4 Incremental development
	D.5 Agile development (Extreme programming)
	D.6 Rapid application development
	D.7 Other approaches
	Appendix E
	Software Estimating Models
	E.1 Analogy models
	E.2 Expert judgment models
	E.2.1 Delphi method
	E.2.2 Wideband delphi method

	E.3 Bottom-up estimating
	E.4 Parametric models
	E.5 Origins and evolution of parametric software models
	E.6 First-order models
	E.7 Second-order models
	E.8 Third-order models

	Appendix F
	System-Level Estimate Case Study
	F.1 HACS baseline size estimate
	F.2 HACS size growth calculation
	F.3 HACS effort calculation
	F.4 HACS Reality check
	F.5 HACS development effort allocation
	F.6 HACS maintenance effort calculation

	Appendix G
	Component-Level Estimate Case Study
	G.1 HACS baseline size estimate
	G.2 HACS size estimate
	G.3 HACS size growth calculation
	G.4 HACS environment
	G.4.1 HACS developer capability
	G.4.2 Personnel evaluation
	G.4.3 Development environment
	G.4.4 HACS product impact
	G.4.5 HACS effective technology constant

	G.5 HACS development effort and schedule calculations
	G.6 Verify HACS estimate realism
	G.7 Allocate HACS development effort and schedule
	G.7.1 HACS effort allocation
	G.7.2 Schedule allocation

	G.8 Allocate HACS maintenance effort
	Appendix H
	The Defense Acquisition System
	H.1 Basic definitions
	H.2 Acquisition authorities
	H.3 Acquisition categories
	H.3.1 ACAT I
	H.3.2 ACAT II
	H.3.3 ACAT III
	H.3.4 ACAT IV
	H.3.5 Abbreviated Acquisition Programs (AAPs)

	H.4 Acquisition management framework
	H.4.1 Framework elements
	H.4.2 User needs and technology opportunities
	H.4.3 Pre-systems acquisition
	H.4.3.1 Concept refinement phase
	H.4.3.2 Milestone A
	H.4.3.3 Technology development phase
	H.4.3.4 Milestone B

	H.4.4 Systems acquisition
	H.4.4.1 System development and demonstration
	H.4.4.2 Milestone C
	H.4.4.3 Production and deployment

	H.4.5 Sustainment
	H.4.5.1 Sustainment effort
	H.4.5.2 Disposal effort

	Penny Grubb and Armstrong Takang, from Software Maintenance: Concepts and Practice
	H.5 Cost analysis
	H.5.1 Cost estimating
	H.5.2 Estimate types
	H.5.2.1 Life-cycle cost estimate
	H.5.2.2 Total Ownership Cost
	H.5.2.3 Analysis of Alternatives
	H.5.2.4 Independent Cost Estimate
	H.5.2.5 Program Office Estimate (POE)
	H.5.2.6 Component Cost Analysis
	H.5.2.7 Economic Analysis

	H.6 Acquisition category information
	Table H-1: DoD Instruction 5000.2 ACATs
	Table H-2: SECNAV Inst 5000.2C ACATs

	H.7 Acquisition references
	H7.1 Online resources
	H7.2 Statutory information
	H7.3 Acquisition decision support systems

	Appendix I
	Data Collection
	I.1 Software data collection overview
	I.1.1 Model comparisons
	I.1.2 Format
	I.1.3 Structure

	I.2 Software data collection details
	I.3 CSCI description
	I.3.1 Requirements
	I.3.2 Systems integration

	I.4 Size data
	I.4.1 Sizing data
	I.4.1.1 Source code (KSLOC)
	I.4.1.2 Reuse adjustments
	I.4.1.3 Software source
	I.4.1.4 Function points
	I.4.1.5 Programming source language

	I.5 Development environment data
	I.6 Cost, schedule data
	I.7 Technology constants
	I.8 Development environment attributes
	I.8.1 Personnel
	I.8.2 Support
	I.8.3 Management
	I.8.4 Product

